Abstract

Research Article

Feasibility study of magnetic sensing for detecting single-neuron action potentials

Denis Tonini, Kai Wu, Renata Saha and Jian-Ping Wang*

Published: 31 December, 2022 | Volume 6 - Issue 1 | Pages: 019-029

Understanding the magnitude of the local magnetic fields generated by neurons is critical to assessing the feasibility of novel magnetic field sensors to record in vivo neuronal activities at cellular resolution. However, the strength of the magnetic fields induced by individual neurons and neuronal networks has not been systematically studied. This step is critical for evaluating and benchmarking the ability of different magnetic field sensors to record neuronal activities with far better spatial and temporal resolution. Herein, FEM exemplary models and open-source computational libraries are used to calculate the magnetic fields generated by individual neurons and neuronal networks at micrometer distances. Our theoretical results show that the magnetic field generated by a single-neuron action potential can be detected by ultra-high sensitivity sub-pT magnetic field sensors, which opens the door to future in vivo decoding of neuronal activities through custom neural networks. We anticipate that the identification of single-neuron signals with high-sensitivity magnetic devices will allow the interface of nanoscale devices to interpret biological signals supported by machine-learning techniques capable of monitoring and predicting the localized activities underlying brain computations.

Read Full Article HTML DOI: 10.29328/journal.abse.1001018 Cite this Article Read Full Article PDF

Keywords:

Neuron activity; Neuronal networks; Magnetic recording; Magnetic field sensor; Computational neurobiology

References

  1. Burle B, Spieser L, Roger C, Casini L, Hasbroucq T, Vidal F. Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. Int J Psychophysiol. 2015 Sep;97(3):210-20. doi: 10.1016/j.ijpsycho.2015.05.004. Epub 2015 May 12. PMID: 25979156; PMCID: PMC4548479.
  2. Clarke J. Squid Fundamentals. In: Weinstock H, editor. SQUID Sensors: Fundamentals, Fabrication and Applications. Dordrecht: Springer Netherlands; 1996 cited 2022 Apr;171–62. (NATO ASI Series). https://doi.org/10.1007/978-94-011-5674-5_1.
  3. Okada S, Bartelle BB, Li N, Breton-Provencher V, Lee JJ, Rodriguez E, Melican J, Sur M, Jasanoff A. Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat Nanotechnol. 2018 Jun;13(6):473-477. doi: 10.1038/s41565-018-0092-4. Epub 2018 Apr 30. PMID: 29713073; PMCID: PMC6086382.
  4. Caparelli EC, Zhai T, Yang Y. Simultaneous Transcranial Magnetic Stimulation and Functional Magnetic Resonance Imaging: Aspects of Technical Implementation. Front Neurosci. 2020 cited 2022 Apr 17; 14. https://www.frontiersin.org/article/10.3389/fnins.2020.554714
  5. Wang Y, Yan J, Wen J, Yu T, Li X. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation. Front Neuroinform. 2016 Apr 25;10:15. doi: 10.3389/fninf.2016.00015. PMID: 27199729; PMCID: PMC4842770.
  6. PicoTesla magnetic tunneling junction sensors integrated with double staged magnetic flux concentrators: Applied Physics Letters: 2022 Jan 8; 113: 24. https://aip.scitation.org/doi/10.1063/1.5052355
  7. Chaves RC, Freitas PP. Low frequency picotesla field detection using hybrid MgO based tunnel sensors: Applied Physics Letters. 2022 Jan 8; 91:10. https://aip.scitation.org/doi/10.1063/1.2775802
  8. Oogane M, Fujiwara K, Kanno A, Nakano T, Wagatsuma H, Arimoto T. Sub-pT magnetic field detection by tunnel magneto-resistive sensors. Appl Phys Express. 2021 Nov; 14(12):123002.
  9. Barry JF, Turner MJ, Schloss JM, Glenn DR, Song Y, Lukin MD, Park H, Walsworth RL. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14133-14138. doi: 10.1073/pnas.1601513113. Epub 2016 Nov 22. Erratum in: Proc Natl Acad Sci U S A. 2017 Aug 7;: PMID: 27911765; PMCID: PMC5150388.
  10. Schirhagl R, Chang K, Loretz M, Degen CL. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem. 2014;65:83-105. doi: 10.1146/annurev-physchem-040513-103659. Epub 2013 Nov 21. PMID: 24274702.
  11. Savukov I, Kim YJ, Schultz G. Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer. J Magn Reson. 2020 Aug;317:106780. doi: 10.1016/j.jmr.2020.106780. Epub 2020 Jul 12. PMID: 32688163.
  12. Boto E, Meyer SS, Shah V, Alem O, Knappe S, Kruger P, Fromhold TM, Lim M, Glover PM, Morris PG, Bowtell R, Barnes GR, Brookes MJ. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage. 2017 Apr 1;149:404-414. doi: 10.1016/j.neuroimage.2017.01.034. Epub 2017 Jan 25. PMID: 28131890; PMCID: PMC5562927.
  13. Hill RM, Boto E, Holmes N, Hartley C, Seedat ZA, Leggett J, Roberts G, Shah V, Tierney TM, Woolrich MW, Stagg CJ, Barnes GR, Bowtell R, Slater R, Brookes MJ. A tool for functional brain imaging with lifespan compliance. Nat Commun. 2019 Nov 5;10(1):4785. doi: 10.1038/s41467-019-12486-x. Erratum in: Nat Commun. 2019 Dec 4;10(1):5628. PMID: 31690797; PMCID: PMC6831615.
  14. Webb JL, Troise L, Hansen NW, Achard J, Brinza O, Staacke R. Optimization of a Diamond Nitrogen Vacancy Centre Magnetometer for Sensing of Biological Signals. Front Phys. 2020 cited 2022 Jun 19; 8. https://www.frontiersin.org/article/10.3389/fphy.2020.522536
  15. Song A, Gauthier JL, Pillow JW, Tank DW, Charles AS. Neural anatomy and optical microscopy (NAOMi) simulation for evaluating calcium imaging methods. J Neurosci Methods. 2021 Jul 1; 358: 109173. doi: 10.1016/j.jneumeth.2021.109173. Epub 2021 Apr 8. PMID: 33839190; PMCID: PMC8217135.
  16. Reynolds JP, Zheng K, Rusakov DA. Multiplexed calcium imaging of single-synapse activity and astroglial responses in the intact brain. Neurosci Lett. 2019 Jan 10; 689: 26-32. doi: 10.1016/j.neulet.2018.06.024. Epub 2018 Jun 19. PMID: 29908948; PMCID: PMC6335263.
  17. Linden NJ, Tabuena DR, Steinmetz NA, Moody WJ, Brunton SL, Brunton BW. Go with the FLOW: visualizing spatiotemporal dynamics in optical widefield calcium imaging. J R Soc Interface. 2021 Aug;18(181):20210523. doi: 10.1098/rsif.2021.0523. Epub 2021 Aug 25. PMID: 34428947; PMCID: PMC8385384.
  18. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 2007 Oct 4;56(1):43-57. doi: 10.1016/j.neuron.2007.08.003. PMID: 17920014; PMCID: PMC2268027.
  19. .Rochefort NL, Jia H, Konnerth A. Calcium imaging in the living brain: prospects for molecular medicine. Trends Mol Med. 2008 Sep;14(9):389-99. doi: 10.1016/j.molmed.2008.07.005. Epub 2008 Aug 12. PMID: 18701348.
  20. Gao L, Wang J, Guan S, Du M, Wu K, Xu K, Zou L, Tian H, Fang Y. Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings. Nano Lett. 2019 Nov 13;19(11):8032-8039. doi: 10.1021/acs.nanolett.9b03232. Epub 2019 Oct 8. PMID: 31580687.
  21. Barbieri F, Trauchessec V, Caruso L, Trejo-Rosillo J, Telenczuk B, Paul E, Bal T, Destexhe A, Fermon C, Pannetier-Lecoeur M, Ouanounou G. Local recording of biological magnetic fields using Giant Magneto Resistance-based micro-probes. Sci Rep. 2016 Dec 19; 6:39330. doi: 10.1038/srep39330. PMID: 27991562; PMCID: PMC5171880.
  22. Pannetier-Lecoeur M, Polovy H, Sergeeva-Chollet N, Cannies G, Fermon C, Parkkonen L. Magnetocardiography with GMR-based sensors. J Phys Conf Ser. 2011 Jul; 303: 012054.
  23. Pannetier-Lecoeur M, Fermon C, Polovy H, Dyvorne H, Sergeeva-Chollet N, Paul J. GMR-based sensors for ultra-sensitive magnetometry. In: 2009 IEEE SENSORS. 2009; 1856–9.
  24. Pannetier M, Fermon C, Legoff G, Simola J, Kerr E, Welling M. Ultra-sensitive field sensors - an alternative to SQUIDs. IEEE Trans Appl Supercond. 2005 Jun; 15(2):892–5.
  25. Zuo S, Heidari H, Farina D, Nazarpour K. Miniaturized Magnetic Sensors for Implantable Magnetomyography. Adv Mater Technol. 2020; 5(6):2000185.
  26. Chen X, Mi W. Mechanically tunable magnetic and electronic transport properties of flexible magnetic films and their heterostructures for spintronics. J Mater Chem C. 2021; 9(30):9400–30.
  27. Amara S, Sevilla GAT, Hawsawi M, Mashraei Y, Mohammed H, Cruz ME. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments. Adv Eng Mater. 2018; 20(10):1800471.
  28. Cardoso S, Leitao DC, Dias TM, Valadeiro J, Silva MD, Chicharo A. Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications. J Phys Appl Phys. 2017 Apr; 50(21):213001.
  29. Hanssen BL, Siraj S, Wong DKY. Recent strategies to minimise fouling in electrochemical detection systems. Rev Anal Chem. 2016 Apr 1; 35(1):1–28.
  30. Seaton BT, Hill DF, Cowen SL, Heien ML. Mitigating the Effects of Electrode Biofouling-Induced Impedance for Improved Long-Term Electrochemical Measurements in Vivo. Anal Chem. 2020 May 5;92(9):6334-6340. doi: 10.1021/acs.analchem.9b05194. Epub 2020 Apr 16. PMID: 32298105; PMCID: PMC8281608.
  31. Kousar A, Peltola E, Laurila T. Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodes. ACS Omega. 2021 Sep 29;6(40):26391-26403. doi: 10.1021/acsomega.1c03666. PMID: 34660997; PMCID: PMC8515610.
  32. Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol. 2018 Oct;52:182-187. doi: 10.1016/j.conb.2018.07.009. Epub 2018 Aug 16. PMID: 30121451; PMCID: PMC6139067.
  33. Carnevale T, Hines M, Hines M, Hines M. The NEURON Book. Cambridge University Press. 2006.
  34. Carnevale, Hines ML, Hines ML, Hines ML. The NEURON simulation environment in epilepsy research. London: Elsevier. 2009.
  35. Hines ML, Carnevale NT. The NEURON simulation environment. Neural Comput. 1997 Aug 15; 9(6):1179-209. doi: 10.1162/neco.1997.9.6.1179. PMID: 9248061.
  36. Hines M. The neurosimulator NEURON. Methods Neuronal Model Ed C Koch Segev Camb MA MIT Press. 1998; 129-136.
  37. Miller RN, Rinzel J. The dependence of impulse propagation speed on firing frequency, dispersion, for the Hodgkin-Huxley model. Biophys J. 1981 May;34(2):227-59. doi: 10.1016/S0006-3495(81)84847-3. PMID: 7236850; PMCID: PMC1327469.
  38. Lee SG, Neiman A, Kim S. Coherence resonance in a Hodgkin-Huxley neuron. Phys Rev E. 1998 Mar 1; 57(3):3292–7.
  39. Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, Pecka M, Attwell D, Grothe B. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun. 2015 Aug 25;6:8073. doi: 10.1038/ncomms9073. PMID: 26305015; PMCID: PMC4560803.
  40. Susuki K. Node of Ranvier disruption as a cause of neurological diseases. ASN Neuro. 2013 Aug 7;5(3):209-19. doi: 10.1042/AN20130025. PMID: 23834220; PMCID: PMC3736360.
  41. HODGKIN AL, HUXLEY AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764. PMID: 12991237; PMCID: PMC1392413.
  42. Clay JR, Paydarfar D, Forger DB. A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. J R Soc Interface. 2008 Dec 6;5(29):1421-8. doi: 10.1098/rsif.2008.0166. PMID: 18544505; PMCID: PMC2607356.
  43. Siciliano R. The Hodgkin-Huxley Model. 41.
  44. Colwell LJ, Brenner MP. Action potential initiation in the hodgkin-huxley model. PLoS Comput Biol. 2009 Jan;5(1):e1000265. doi: 10.1371/journal.pcbi.1000265. Epub 2009 Jan 16. PMID: 19148265; PMCID: PMC2607014.
  45. Albertson AJ, Williams SB, Hablitz JJ. Regulation of epileptiform discharges in rat neocortex by HCN channels. J Neurophysiol. 2013 Oct;110(8):1733-43. doi: 10.1152/jn.00955.2012. Epub 2013 Jul 17. PMID: 23864381; PMCID: PMC3798942.
  46. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JG. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004 May 15;557(Pt 1):175-90. doi: 10.1113/jphysiol.2003.055772. Epub 2004 Feb 20. PMID: 14978199; PMCID: PMC1665051.
  47. Chan CY, Hounsgaard J, Nicholson C. Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol. 1988 Aug;402:751-71. doi: 10.1113/jphysiol.1988.sp017232. PMID: 3236254; PMCID: PMC1191919.
  48. Saha R, Faramarzi S, Bloom RP, Benally OJ, Wu K, di Girolamo A. Strength-frequency curve for micromagnetic neurostimulation through EPSPs on rat hippocampal neurons and numerical modeling of magnetic microcoil. 2021 Dec [cited 2022 Jan 7] 2021.11.30.470598. https://www.biorxiv.org/content/10.1101/2021.11.30.470598v1
  49. Delso C, Martínez JM, Cebrián G, Álvarez I, Raso J. Understanding the occurrence of tailing in survival curves of Salmonella Typhimurium treated by pulsed electric fields. Bioelectrochemistry. 2020 Oct;135:107580. doi: 10.1016/j.bioelechem.2020.107580. Epub 2020 Jun 2. PMID: 32526677.
  50. Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 2000 May;23(5):216-22. doi: 10.1016/s0166-2236(00)01547-2. PMID: 10782127.
  51. Tikidji-Hamburyan RA, Narayana V, Bozkus Z, El-Ghazawi TA. Software for Brain Network Simulations: A Comparative Study. Front Neuroinformatics. 2017 [cited 2022 Dec 29]; 11. https://www.frontiersin.org/articles/10.3389/fninf.2017.00046
  52. Hagen E, Næss S, Ness TV, Einevoll GT. Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Front Neuroinform. 2018 Dec 18;12:92. doi: 10.3389/fninf.2018.00092. PMID: 30618697; PMCID: PMC6305460.
  53. Lindén H, Hagen E, Lęski S, Norheim ES, Pettersen KH, Einevoll GT. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front Neuroinform. 2014 Jan 16;7:41. doi: 10.3389/fninf.2013.00041. PMID: 24474916; PMCID: PMC3893572.
  54. Blagoev KB, Mihaila B, Travis BJ, Alexandrov LB, Bishop AR, Ranken D, Posse S, Gasparovic C, Mayer A, Aine CJ, Ulbert I, Morita M, Müller W, Connor J, Halgren E. Modelling the magnetic signature of neuronal tissue. Neuroimage. 2007 Aug 1;37(1):137-48. doi: 10.1016/j.neuroimage.2007.04.033. Epub 2007 May 4. PMID: 17544300.
  55. Hagen E, Ness TV. LFPy. 2021. https://github.com/LFPy/LFPy
  56. Hounsgaard J, Kiehn O. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. J Physiol. 1993 Aug;468:245-59. doi: 10.1113/jphysiol.1993.sp019769. PMID: 8254508; PMCID: PMC1143824.
  57. McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM, Hines ML. Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience. J Comput Neurosci. 2017 Feb;42(1):1-10. doi: 10.1007/s10827-016-0623-7. Epub 2016 Sep 15. PMID: 27629590; PMCID: PMC5279891.
  58. Pashut T, Wolfus S, Friedman A, Lavidor M, Bar-Gad I, Yeshurun Y, Korngreen A. Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput Biol. 2011 Mar;7(3):e1002022. doi: 10.1371/journal.pcbi.1002022. Epub 2011 Mar 24. PMID: 21455288; PMCID: PMC3063755.
  59. Li CL, Bak AF, Parker LO. Specific resistivity of the cerebral cortex and white matter. Exp Neurol. 1968 Apr;20(4):544-57. doi: 10.1016/0014-4886(68)90108-8. PMID: 5659447.
  60. Glenn DR, Lee K, Park H, Weissleder R, Yacoby A, Lukin MD, Lee H, Walsworth RL, Connolly CB. Single-cell magnetic imaging using a quantum diamond microscope. Nat Methods. 2015 Aug;12(8):736-738. doi: 10.1038/nmeth.3449. Epub 2015 Jun 22. PMID: 26098019; PMCID: PMC4521973.
  61. Caruso L, Wunderle T, Lewis CM, Valadeiro J, Trauchessec V, Trejo Rosillo J, Amaral JP, Ni J, Jendritza P, Fermon C, Cardoso S, Freitas PP, Fries P, Pannetier-Lecoeur M. In Vivo Magnetic Recording of Neuronal Activity. Neuron. 2017 Sep 13;95(6):1283-1291.e4. doi: 10.1016/j.neuron.2017.08.012. Epub 2017 Aug 30. PMID: 28844526; PMCID: PMC5744593.
  62. Amaral J, Cardoso S, Freitas PP, Sebastião AM. Toward a system to measure action potential on mice brain slices with local magnetoresistive probes. J Appl Phys. 2011 Apr 1;109(7):07B308.
  63. Fujiwara K, Oogane M, Kanno A, Imada M, Jono J, Terauchi T. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors. Appl Phys Express. 2018 Jan 18; 11(2):023001.
  64. Pannetier-Lecoeur M, Parkkonen L, Sergeeva-Chollet N, Polovy H, Fermon C, Fowley C. Magnetocardiography with sensors based on giant magnetoresistance. Appl Phys Lett. 2011 Apr 11; 98(15):153705.
  65. Chopin C, Torrejon J, Solignac A, Fermon C, Jendritza P, Fries P, Pannetier-Lecoeur M. Magnetoresistive Sensor in Two-Dimension on a 25 μm Thick Silicon Substrate for In Vivo Neuronal Measurements. ACS Sens. 2020 Nov 25;5(11):3493-3500. doi: 10.1021/acssensors.0c01578. Epub 2020 Oct 27. PMID: 33108725.
  66. Guedes A, Macedo R, Jaramillo G, Cardoso S, Freitas PP, Horsley DA. Hybrid GMR Sensor Detecting 950 pT/sqrt(Hz) at 1 Hz and Room Temperature. Sensors (Basel). 2018 Mar 6;18(3):790. doi: 10.3390/s18030790. PMID: 29509677; PMCID: PMC5876515.
  67. Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, Kedziora DJ, Chadderdon GL, Kerr CC, Neymotin SA, McDougal RA, Hines M, Shepherd GM, Lytton WW. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. Elife. 2019 Apr 26;8:e44494. doi: 10.7554/eLife.44494. PMID: 31025934; PMCID: PMC6534378.
  68. Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schürmann F, Hines ML. Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Comput. 2016 Oct;28(10):2063-90. doi: 10.1162/NECO_a_00876. Epub 2016 Aug 24. PMID: 27557104; PMCID: PMC5295685.
  69. Hammond C, Goaillard JM, Debanne D, Gaiarsa JL. Chapter 18 - Synaptic plasticity. In: Hammond C, editor. Cellular and Molecular Neurophysiology Fourth Edition. Boston: Academic Press. 2015 [cited 2022 Feb 5]; 361–89. https://www.sciencedirect.com/science/article/pii/B9780123970329000182
  70. Lu HY, Zhu JG, Ramsden VS, Hui SYR. Measurement and modeling of stray capacitances in high frequency transformers. In: 30th Annual IEEE Power Electronics Specialists Conference Record (Cat No99CH36321). 1999; 763–8 .2.
  71. Cheng Y, Wang G, Ghovanloo M. Analytical Modeling and Optimization of Small Solenoid Coils for Millimeter-Sized Biomedical Implants. IEEE Trans Microw Theory Tech. 2017 Mar;65(3):1024–35.
  72. Wu J, Quinn V, Bernstein GH. An Inductive Link with Integrated Receiving Coil-Coupling Coefficient and Link Efficiency. J Comput Electron. 2005 Dec 1;4(3):221–30.
  73. Houston B, Thompson M, Ko A, Chizeck H. A machine-learning approach to volitional control of a closed-loop deep brain stimulation system. J Neural Eng. 2019 Feb;16(1):016004. doi: 10.1088/1741-2552/aae67f. Epub 2018 Nov 16. PMID: 30444218.
  74. Neumann WJ, Rodriguez-Oroz MC. Machine Learning Will Extend the Clinical Utility of Adaptive Deep Brain Stimulation. Mov Disord. 2021 Apr; 36(4):796-799. doi: 10.1002/mds.28567. PMID: 33851753.
  75. Boutet A, Madhavan R, Elias GJB, Joel SE, Gramer R, Ranjan M, Paramanandam V, Xu D, Germann J, Loh A, Kalia SK, Hodaie M, Li B, Prasad S, Coblentz A, Munhoz RP, Ashe J, Kucharczyk W, Fasano A, Lozano AM. Predicting optimal deep brain stimulation parameters for Parkinson's disease using functional MRI and machine learning. Nat Commun. 2021 May 24;12(1):3043. doi: 10.1038/s41467-021-23311-9. PMID: 34031407; PMCID: PMC8144408.
  76. Shamir RR, Duchin Y, Kim J, Patriat R, Marmor O, Bergman H, Vitek JL, Sapiro G, Bick A, Eliahou R, Eitan R, Israel Z, Harel N. Microelectrode Recordings Validate the Clinical Visualization of Subthalamic-Nucleus Based on 7T Magnetic Resonance Imaging and Machine Learning for Deep Brain Stimulation Surgery. Neurosurgery. 2019 Mar 1;84(3):749-757. doi: 10.1093/neuros/nyy212. PMID: 29800386; PMCID: PMC6500885.
  77. Bermudez C, Rodriguez W, Huo Y, Hainline AE, Li R, Shults R. Towards machine learning prediction of deep brain stimulation (DBS) intra-operative efficacy maps. In: Medical Imaging 2019: Image Processing. SPIE; 2019 [cited 2022 Jan 8]; 528–34. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10949/1094922/Towards-machine-learning-prediction-of-deep-brain-stimulation-DBS-intra/10.1117/12.2509728.full
  78. Machine-Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson’s Disease - ScienceDirect. Cited 2022 Jan 8. https://www.sciencedirect.com/science/article/pii/S1935861X15010049
  79. Dowben RM, Rose JE. A metal-filled microelectrode. Science. 1953 Jul 3; 118(3053):22-4. doi: 10.1126/science.118.3053.22. PMID: 13076162.
  80. Topalovic U, Barclay S, Ling C, Alzuhair A, Yu W, Hokhikyan V. A wearable platform for closed-loop stimulation and recording of single- neuron and local field potential activity in freely-moving humans. bioRxiv; 2022 cited 2022 Feb 9;2022.02.05.479253. https://www.biorxiv.org/content/10.1101/2022.02.05.479253v1
  81. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008; 10:275-309. doi: 10.1146/annurev.bioeng.10.061807.160518. PMID: 18429704.
  82. Cogan SF, Ehrlich J, Plante TD, Smirnov A, Shire DB, Gingerich M, Rizzo JF. Sputtered iridium oxide films for neural stimulation electrodes. J Biomed Mater Res B Appl Biomater. 2009 May;89(2):353-361. doi: 10.1002/jbm.b.31223. PMID: 18837458; PMCID: PMC7442142.
  83. Park HJ, Bonmassar G, Kaltenbach JA, Machado AG, Manzoor NF, Gale JT. Activation of the central nervous system induced by micro-magnetic stimulation. Nat Commun. 2013;4:2463. doi: 10.1038/ncomms3463. PMID: 24030203; PMCID: PMC3845906.
  84. Mohsin SA, Sheikh NM, Saeed U. MRI-induced heating of deep brain stimulation leads. Phys Med Biol. 2008 Oct 21;53(20):5745-56. doi: 10.1088/0031-9155/53/20/012. Epub 2008 Sep 26. PMID: 18824784.
  85. Gregersen F, Göksu C, Schaefers G, Xue R, Thielscher A, Hanson LG. Safety evaluation of a new setup for transcranial electric stimulation during magnetic resonance imaging. Brain Stimul. 2021 May-Jun;14(3):488-497. doi: 10.1016/j.brs.2021.02.019. Epub 2021 Mar 9. PMID: 33706007.
  86. Angelone LM, Ahveninen J, Belliveau JW, Bonmassar G. Analysis of the role of lead resistivity in specific absorption rate for deep brain stimulator leads at 3T MRI. IEEE Trans Med Imaging. 2010 Apr;29(4):1029-38. doi: 10.1109/TMI.2010.2040624. Epub 2010 Mar 22. PMID: 20335090; PMCID: PMC3145199.
  87. Golestanirad L, Kazemivalipour E, Lampman D, Habara H, Atalar E, Rosenow J, Pilitsis J, Kirsch J. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations. Magn Reson Med. 2020 Jun;83(6):2284-2292. doi: 10.1002/mrm.28049. Epub 2019 Nov 2. PMID: 31677308; PMCID: PMC7047541.
  88. Rahimpour S, Kiyani M, Hodges SE, Turner DA. Deep brain stimulation and electromagnetic interference. Clin Neurol Neurosurg. 2021 Apr;203:106577. doi: 10.1016/j.clineuro.2021.106577. Epub 2021 Feb 25. PMID: 33662743; PMCID: PMC8081063.
  89. Oathes DJ, Balderston NL, Kording KP, DeLuisi JA, Perez GM, Medaglia JD, Fan Y, Duprat RJ, Satterthwaite TD, Sheline YI, Linn KA. Combining transcranial magnetic stimulation with functional magnetic resonance imaging for probing and modulating neural circuits relevant to affective disorders. Wiley Interdiscip Rev Cogn Sci. 2021 Jul;12(4):e1553. doi: 10.1002/wcs.1553. Epub 2021 Jan 19. PMID: 33470055; PMCID: PMC8521438.
  90. Doering M, Kieninger J, Urban GA, Weltin A. Electrochemical microelectrode degradation monitoring:in situinvestigation of platinum corrosion at neutral pH. J Neural Eng. 2022 Jan 24;19(1). doi: 10.1088/1741-2552/ac47da. PMID: 34983028.
  91. Kim C, Nichols E, Kim BN. Choosing the Optimal Power Coils Using Open-Source k-Oriented Design Automation. IEEE Trans Biomed Circuits Syst. 2021 Feb;15(1):159-170. doi: 10.1109/TBCAS.2021.3059934. Epub 2021 Mar 30. PMID: 33729948.
  92. Salmelin R, Hari R, Lounasmaa OV, Sams M. Dynamics of brain activation during picture naming. Nature. 1994 Mar 31;368(6470):463-5. doi: 10.1038/368463a0. PMID: 8133893.
  93. Kanno A, Nakasato N, Oogane M, Fujiwara K, Nakano T, Arimoto T, Matsuzaki H, Ando Y. Scalp attached tangential magnetoencephalography using tunnel magneto-resistive sensors. Sci Rep. 2022 Apr 12;12(1):6106. doi: 10.1038/s41598-022-10155-6. PMID: 35414691; PMCID: PMC9005603.
  94. Zhang Y, Le S, Li H, Ji B, Wang MH, Tao J, Liang JQ, Zhang XY, Kang XY. MRI magnetic compatible electrical neural interface: From materials to application. Biosens Bioelectron. 2021 Dec 15;194:113592. doi: 10.1016/j.bios.2021.113592. Epub 2021 Sep 1. PMID: 34507098.
  95. Shirotori S, Kikitsu A, Higashi Y, Kurosaki Y, Iwasaki H. Symmetric Response Magnetoresistance Sensor With Low 1/f Noise by Using an Antiphase AC Modulation Bridge. IEEE Trans Magn. 2021 Feb;57(2):1–5.
  96. Bonmassar G, Lee SW, Freeman DK, Polasek M, Fried SI, Gale JT. Microscopic magnetic stimulation of neural tissue. Nat Commun. 2012 Jun 26;3:921. doi: 10.1038/ncomms1914. PMID: 22735449; PMCID: PMC3621430.
  97. Goyal A, Goetz S, Stanslaski S, Oh Y, Rusheen AE, Klassen B, Miller K, Blaha CD, Bennet KE, Lee K. The development of an implantable deep brain stimulation device with simultaneous chronic electrophysiological recording and stimulation in humans. Biosens Bioelectron. 2021 Mar 15;176:112888. doi: 10.1016/j.bios.2020.112888. Epub 2020 Dec 15. PMID: 33395569; PMCID: PMC7953342.
  98. Jeong DU, Lim KM. Artificial neural network model for predicting changes in ion channel conductance based on cardiac action potential shapes generated via simulation. Sci Rep. 2021 Apr 9;11(1):7831. doi: 10.1038/s41598-021-87578-0. PMID: 33837240; PMCID: PMC8035260.
  99. Saha R, Wu K, Su D, Wang JP. Spin current nano-oscillator (SCNO) as a potential frequency-based, ultra-sensitive magnetic biosensor: a simulation study. Nanotechnology. 2020 Sep 11;31(37):375501. doi: 10.1088/1361-6528/ab9921. Epub 2020 Jun 3. PMID: 32492673.
  100. Saha R, Wu K, Bloom RP, Liang S, Tonini D, Wang JP. A review on magnetic and spintronic neurostimulation: challenges and prospects. Nanotechnology. 2022 Feb 10;33(18). doi: 10.1088/1361-6528/ac49be. PMID: 35013010.

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?