Abstract

Review Article

Hydrogel-Based Formulations for Drug Delivery to the Posterior Segment of the Eye

AmirHossein Bahmanpour, Maryam Mollazadeh-Bajestani, Maryam Ghaff ari, Fathollah Moztarzadeh and Azadeh Sepahvandi*

Published: 12 September, 2023 | Volume 7 - Issue 1 | Pages: 038-050

Hydrogel-based formulations hold significant promise for treating ocular diseases that impact the posterior segment of the eye. These formulations exhibit the ability to surmount ocular barriers and offer sustained drug release, rendering them efficacious drug delivery systems. This article addresses the challenges linked to treating disorders affecting the posterior eye segment and underscores the imperative for less invasive drug delivery methodologies. We further delve into diverse contemporary ocular dosage forms, encompassing gels, nanostructures, and implants, with a specific emphasis on hydrogels. Hydrogels offer several merits, including precise targeting, sustained release, enhanced bioavailability, and non-invasiveness. Moreover, they curtail the risk of adverse effects and foster patient adherence. An enthralling advancement is the amalgamation of hybrid drug delivery systems, integrating nanoparticles, liposomes, dendrimers, and stimuli-activated nano-systems, with hydrogels for posterior eye ailment treatment. These hybrid nano-systems exhibit promise in enhancing drug stability, prolonging drug release, and pinpointing specific tissues within the posterior segment. We also provide an overview of ongoing clinical trials and approved hydrogel-based drug delivery systems, like Retisert and Ozurdex. These systems have demonstrated efficacy in managing chronic non-infectious uveitis, Age-related Macular Degeneration (AMD), and diabetic macular edema. Nevertheless, challenges persist, including optimizing bioavailability, maintaining drug stability, and implementing personalized treatment approaches. The incessant evolution of gel-based drug delivery systems stands to substantially enhance patients’ quality of life and establish new benchmarks in treating posterior eye diseases. The future of ophthalmology brims with excitement, as gel-based drug delivery systems hold the potential to revolutionize ocular therapies, providing effective remedies for an array of vision-related afflictions.

Read Full Article HTML DOI: 10.29328/journal.abse.1001024 Cite this Article Read Full Article PDF

Keywords:

Hydrogel; Drug delivery system; Posterior segment; Implant; Age-related macular degeneration; Diabetic macular edema

References

  1. Bahmanpour AH, Ghaffari M, Ashraf S, Mozafari M. Nanoengineered biomaterials for diabetes. Nanoengineered Biomaterials for Advanced Drug Delivery. 2020; 735–752.
  2. Bahmanpour A, Ghaffari M, Milan PB, Moztarzadeh F, Mozafari M. Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin. Biotechnol Appl Biochem. 2021 Apr;68(2):247-256. doi: 10.1002/bab.1917. Epub 2020 May 20. PMID: 32250466.
  3. Sepahvandi A, Eskandari M, Moztarzadeh F. Drug delivery systems to the posterior segment of the eye: implants and nanoparticles. Bionanoscience. 2016; 6: 276–283.
  4. Sawarkar S, Pimple P, Sawant A, Nair S. Current insights into targeting strategies for the effective therapy of diseases of the posterior eye segment. Crit Rev Ther Drug Carrier Syst.
  5. Srirangam R, Hippalgaonkar K, Avula B, Khan IA, Majumdar S. Evaluation of the intravenous and topical routes for ocular delivery of hesperidin and hesperetin. J Ocul Pharmacol Ther. 2012 Dec;28(6):618-27. doi: 10.1089/jop.2012.0040. Epub 2012 Jul 13. PMID: 22794525; PMCID: PMC3505831.
  6. Kang-Mieler JJ, Osswald CR, Mieler WF. Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv. 2014 Oct;11(10):1647-60. doi: 10.1517/17425247.2014.935338. Epub 2014 Jun 30. PMID: 24975820.
  7. Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018 Nov;107:1564-1582. doi: 10.1016/j.biopha.2018.08.138. Epub 2018 Sep 5. PMID: 30257375.
  8. Robinson MR, Lee SS, Kim H, Kim S, Lutz RJ, Galban C, Bungay PM, Yuan P, Wang NS, Kim J, Csaky KG. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006 Mar;82(3):479-87. doi: 10.1016/j.exer.2005.08.007. Epub 2005 Sep 15. PMID: 16168412.
  9. Ranta VP, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, Murtomäki L, Hornof M, Urtti A. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010 Nov 20;148(1):42-48. doi: 10.1016/j.jconrel.2010.08.028. Epub 2010 Sep 7. PMID: 20831888.
  10. Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: Anatomy, physiology and barriers to drug delivery. in Ocular transporters and receptors. 2013; 1–36. Elsevier.
  11. Tabibian D, Hoogewoud F, Mavrakanas N, Schutz JS. Misdirected aqueous flow in rhegmatogenous retinal detachment: a pathophysiology update. Surv Ophthalmol. 2015 Jan-Feb;60(1):51-9. doi: 10.1016/j.survophthal.2014.07.002. Epub 2014 Aug 10. PMID: 25223495.
  12. del Amo EM, Vellonen KS, Kidron H, Urtti A. Intravitreal clearance and volume of distribution of compounds in rabbits: In silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm. 2015 Sep;95(Pt B):215-26. doi: 10.1016/j.ejpb.2015.01.003. Epub 2015 Jan 17. PMID: 25603198.
  13. Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics. 2023 Jul 1;15(7):1862. doi: 10.3390/pharmaceutics15071862. PMID: 37514050; PMCID: PMC10385847.
  14. Qin Z, Yu X, Wu H, Yang L, Lv H, Yang X. Injectable and Cytocompatible Dual Cross-Linking Hydrogels with Enhanced Mechanical Strength and Stability. ACS Biomater Sci Eng. 2020 Jun 8;6(6):3529-3538. doi: 10.1021/acsbiomaterials.0c00416. Epub 2020 May 6. PMID: 33463187.
  15. Rahman MQ, Chuah KS, Macdonald EC, Trusler JP, Ramaesh K. The effect of pH, dilution, and temperature on the viscosity of ocular lubricants--shift in rheological parameters and potential clinical significance. Eye (Lond). 2012 Dec;26(12):1579-84. doi: 10.1038/eye.2012.211. Epub 2012 Oct 19. PMID: 23079749; PMCID: PMC3522845.
  16. Liu W, Lee BS, Mieler WF, Kang-Mieler JJ. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro. Curr Eye Res. 2019 Mar;44(3):264-274. doi: 10.1080/02713683.2018.1533983. Epub 2018 Oct 19. PMID: 30295090; PMCID: PMC7216294.
  17. Pan M, Ren Z, Ma X, Chen L, Lv G, Liu X, Li S, Li X, Wang J. A biomimetic peptide-drug supramolecular hydrogel as eyedrops enables controlled release of ophthalmic drugs. Acta Biomater. 2023 Sep 1;167:195-204. doi: 10.1016/j.actbio.2023.06.036. Epub 2023 Jun 29. PMID: 37392932.
  18. Santhanam S, Liang J, Struckhoff J, Hamilton PD, Ravi N. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes. Acta Biomater. 2016 Oct 1; 43:327-337. doi: 10.1016/j.actbio.2016.07.051. Epub 2016 Jul 29. PMID: 27481290; PMCID: PMC5787031.
  19. Lau CML, Chau Y. Injectable, hydrolytically degradable hydrogel for controllable, sustained protein release in the posterior eye. Invest Ophthalmol Vis Sci. 2019; 60: 5395.
  20. Mishra D, Gade S, Glover K, Sheshala R, Singh TRR. Vitreous Humor: Composition, Characteristics and Implication on Intravitreal Drug Delivery. Curr Eye Res. 2023 Feb;48(2):208-218. doi: 10.1080/02713683.2022.2119254. Epub 2022 Nov 28. PMID: 36036478.
  21. Abdelmohsen HAM, Copeland NA, Hardy JG. Light-responsive biomaterials for ocular drug delivery. Drug Deliv Transl Res. 2022; 1–24.
  22. Albadr AA, Tekko IA, Vora LK, Ali AA, Laverty G, Donnelly RF, Thakur RRS. Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections. Drug Deliv Transl Res. 2022 Apr;12(4):931-943. doi: 10.1007/s13346-021-01032-2. Epub 2021 Jul 23. PMID: 34302273; PMCID: PMC8888497.
  23. Wu Y, Vora LK, Wang Y, Adrianto MF, Tekko IA, Waite D, Donnelly RF, Thakur RRS. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye. Eur J Pharm Biopharm. 2021 Aug;165:306-318. doi: 10.1016/j.ejpb.2021.05.022. Epub 2021 May 26. PMID: 34048879.
  24. Lee K, Park S, Jo DH, Cho CS, Jang HY, Yi J, Kang M, Kim J, Jung HY, Kim JH, Ryu W, Khademhosseini A. Self-Plugging Microneedle (SPM) for Intravitreal Drug Delivery. Adv Healthc Mater. 2022 Jun;11(12):e2102599. doi: 10.1002/adhm.202102599. Epub 2022 Mar 3. PMID: 35192734.
  25. Roy G, Garg P, Venuganti VVK. Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye. Int J Pharm. 2022 Jan 25;612:121305. doi: 10.1016/j.ijpharm.2021.121305. Epub 2021 Nov 17. PMID: 34800618.
  26. Aguirre-Ramírez M, Silva-Jiménez H, Banat IM, Díaz De Rienzo MA. Surfactants: physicochemical interactions with biological macromolecules. Biotechnol Lett. 2021 Mar;43(3):523-535. doi: 10.1007/s10529-020-03054-1. Epub 2021 Feb 3. PMID: 33534014; PMCID: PMC7872986.
  27. Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020 Jul 17;10(45):26777-26791. doi: 10.1039/d0ra03491f. PMID: 35515778; PMCID: PMC9055574.
  28. Scioli Montoto S, Muraca G, Ruiz ME. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front Mol Biosci. 2020 Oct 30;7:587997. doi: 10.3389/fmolb.2020.587997. PMID: 33195435; PMCID: PMC7662460.
  29. Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv Pharm Bull. 2020 Jun;10(2):150-165. doi: 10.34172/apb.2020.021. Epub 2020 Feb 18. PMID: 32373485; PMCID: PMC7191226.
  30. Akulo KA, Adali T, Moyo MTG, Bodamyali T. Intravitreal Injectable Hydrogels for Sustained Drug Delivery in Glaucoma Treatment and Therapy. Polymers (Basel). 2022 Jun 10;14(12):2359. doi: 10.3390/polym14122359. PMID: 35745935; PMCID: PMC9230531.
  31. Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics. 2022 Jul 31;14(8):1605. doi: 10.3390/pharmaceutics14081605. PMID: 36015231; PMCID: PMC9414879.
  32. Deng C, Zhao PY, Branham K, Schlegel D, Fahim AT, Jayasundera TK, Khan N, Besirli CG. Real-world outcomes of voretigene neparvovec treatment in pediatric patients with RPE65-associated Leber congenital amaurosis. Graefes Arch Clin Exp Ophthalmol. 2022 May;260(5):1543-1550. doi: 10.1007/s00417-021-05508-2. Epub 2022 Jan 10. PMID: 35001204; PMCID: PMC9010358.
  33. Sisk R. Subretinal Delivery of RGX-314: A Gene Therapy for Neovascular Age-Related Macular Degeneration (nAMD). Invest Ophthalmol Vis Sci. 2023; 64: 5061.
  34. Parker MA, Erker LR, Audo I, Choi D, Mohand-Said S, Sestakauskas K, Benoit P, Appelqvist T, Krahmer M, Ségaut-Prévost C, Lujan BJ, Faridi A, Chegarnov EN, Steinkamp PN, Ku C, da Palma MM, Barale PO, Ayelo-Scheer S, Lauer A, Stout T, Wilson DJ, Weleber RG, Pennesi ME, Sahel JA, Yang P. Three-Year Safety Results of SAR422459 (EIAV-ABCA4) Gene Therapy in Patients With ABCA4-Associated Stargardt Disease: An Open-Label Dose-Escalation Phase I/IIa Clinical Trial, Cohorts 1-5. Am J Ophthalmol. 2022 Aug;240:285-301. doi: 10.1016/j.ajo.2022.02.013. Epub 2022 Mar 4. PMID: 35248547; PMCID: PMC9308722.
  35. Seah I, Ong C, Liu Z, Su X. Polymeric biomaterials in the treatment of posterior segment diseases. Front Med (Lausanne). 2022 Aug 18;9:949543. doi: 10.3389/fmed.2022.949543. PMID: 36059842; PMCID: PMC9433984.
  36. Reddy SK, Ballal AR, Shailaja S, Seetharam RN, Raghu CH, Sankhe R, Pai K, Tender T, Mathew M, Aroor A, Shetty AK, Adiga S, Devi V, Muttigi MS, Upadhya D. Small extracellular vesicle-loaded bevacizumab reduces the frequency of intravitreal injection required for diabetic retinopathy. Theranostics. 2023 Apr 9;13(7):2241-2255. doi: 10.7150/thno.78426. PMID: 37153730; PMCID: PMC10157735.
  37. Peng WY, He LW, Yin XF, Zhou BB, Zhou T, Zhou SY. Successful regression of newly formed corneal neovascularization by subconjunctival injection of bevacizumab in patients with chemical burns. Front Med (Lausanne). 2023 Jun 22;10:1210765. doi: 10.3389/fmed.2023.1210765. PMID: 37425330; PMCID: PMC10324651.
  38. Phasukkijwatana N, Jongpipatchai R, Phuksapaisalsilp P, Pharkjaksu S, Ngamskulrungroj P, Prakhunhungsit S. Effect of fenestrated sterile drape and face mask on bacterial dispersion toward the periocular area during intravitreal injection. Sci Rep. 2023 Jun 19;13(1):9878. doi: 10.1038/s41598-023-37091-3. PMID: 37336958; PMCID: PMC10279653.
  39. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016 Dec;1(12):16071. doi: 10.1038/natrevmats.2016.71. Epub 2016 Oct 18. PMID: 29657852; PMCID: PMC5898614.
  40. Wang K, Han Z. Injectable hydrogels for ophthalmic applications. J Control Release. 2017 Dec 28;268:212-224. doi: 10.1016/j.jconrel.2017.10.031. Epub 2017 Oct 20. PMID: 29061512; PMCID: PMC5722685.
  41. Alonso JM, Andrade Del Olmo J, Perez Gonzalez R, Saez-Martinez V. Injectable Hydrogels: From Laboratory to Industrialization. Polymers (Basel). 2021 Feb 22;13(4):650. doi: 10.3390/polym13040650. PMID: 33671648; PMCID: PMC7926321.
  42. Doshi RR, Bakri SJ, Fung AE. Intravitreal injection technique. Semin Ophthalmol. 2011 May;26(3):104-13. doi: 10.3109/08820538.2010.541318. PMID: 21609222.
  43. Zhang Q, Weber C, Schubert US, Hoogenboom R. Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater Horiz. 2017; 4 : 109–116.
  44. Gade S, Larraneta E, Donnelly RF, Vanrell RH, Alvarez‐Lorenzo C, Thakur RRS. Development of injectable thermoresponsive Cs‐g‐PNIPAAm hydrogel for intrascleral drug delivery of sunitinib malate for the posterior segment ocular disease, age‐related macular degeneration. Acta Ophthalmol. 2022; 100.
  45. Annala A, Ilochonwu BC, Wilbie D, Sadeghi A, Hennink WE, Vermonden T. Self-Healing Thermosensitive Hydrogel for Sustained Release of Dexamethasone for Ocular Therapy. ACS Polym Au. 2022 Nov 3;3(1):118-131. doi: 10.1021/acspolymersau.2c00038. PMID: 36785837; PMCID: PMC9912331.
  46. Meany EL. Injectable Polymer‐Nanoparticle Hydrogel for the Sustained Intravitreal Delivery of Bimatoprost. Adv Ther (Weinh). 2023; 6: 2200207.
  47. Bisht R, Jaiswal JK, Chen YS, Jin J, Rupenthal ID. Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv. 2016 Jul;13(7):953-62. doi: 10.1517/17425247.2016.1163334. Epub 2016 Mar 24. PMID: 26967153.
  48. Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chem Commun (Camb). 2010 Jun 21;46(23):4094-6. doi: 10.1039/c002565h. Epub 2010 May 13. PMID: 20464018.
  49. Bisht R, Jaiswal JK, Oliver VF, Eurtivong C, Reynisson J, Rupenthal ID. Preparation and evaluation of PLGA nanoparticle-loaded biodegradable light-responsive injectable implants as a promising platform for intravitreal drug delivery. J Drug Deliv Sci Technol. 2017; 40:142–156.
  50. Shen C, Zhao X, Ren Z, Yang B, Wang X, Hu A, Hu J. In Situ Formation of Injectable Gelatin Methacryloyl (GelMA) Hydrogels for Effective Intraocular Delivery of Triamcinolone Acetonide. Int J Mol Sci. 2023 Mar 4;24(5):4957. doi: 10.3390/ijms24054957. PMID: 36902389; PMCID: PMC10003315.
  51. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PMID: 11433435.
  52. Yu Y, Lau LC, Lo AC, Chau Y. Injectable Chemically Crosslinked Hydrogel for the Controlled Release of Bevacizumab in Vitreous: A 6-Month In Vivo Study. Transl Vis Sci Technol. 2015 Mar 10;4(2):5. doi: 10.1167/tvst.4.2.5. PMID: 25774331; PMCID: PMC4356035.
  53. Ilochonwu BC, Mihajlovic M, Maas-Bakker RF, Rousou C, Tang M, Chen M, Hennink WE, Vermonden T. Hyaluronic Acid-PEG-Based Diels-Alder In SituForming Hydrogels for Sustained Intraocular Delivery of Bevacizumab. Biomacromolecules. 2022 Jul 11;23(7):2914-2929. doi: 10.1021/acs.biomac.2c00383. Epub 2022 Jun 23. PMID: 35735135; PMCID: PMC9277588.
  54. Zhuo S, Zhang F, Yu J, Zhang X, Yang G, Liu X. pH-Sensitive Biomaterials for Drug Delivery. Molecules. 2020 Nov 30;25(23):5649. doi: 10.3390/molecules25235649. PMID: 33266162; PMCID: PMC7730929.
  55. Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym. 2017 Jan 2;155:208-217. doi: 10.1016/j.carbpol.2016.08.073. Epub 2016 Aug 25. PMID: 27702506.
  56. Jalababu R, Reddy MK, Reddy KVNS, Rao KSVK. Hydrogels as Smart Drug Delivery Systems: Recent Advances. Smart Nanomaterials in Biomedical Applications.2022; 173–201.
  57. Xu H, Liu Y, Jin L, Chen X, Chen X, Wang Q, Tang Z. Preparation and Characterization of Ion-Sensitive Brimonidine Tartrate In Situ Gel for Ocular Delivery. Pharmaceuticals (Basel). 2023 Jan 8;16(1):90. doi: 10.3390/ph16010090. PMID: 36678587; PMCID: PMC9866900.
  58. Karmakar S, Manna S, Kabiraj S, Jana S. Recent progress in alginate-based carriers for ocular targeting of therapeutics. Food Hydrocolloids for Health. 2022; 2:100071.
  59. Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: physicochemical characterisation and in vitro release. Int J Pharm. 2011 Jun 15;411(1-2):69-77. doi: 10.1016/j.ijpharm.2011.03.042. Epub 2011 Mar 29. PMID: 21453762.
  60. Dromel PC, Singh D, Alexander-Katz A, Kurisawa M, Spector M, Young M. Mechano-Chemical Effect of Gelatin- and HA-Based Hydrogels on Human Retinal Progenitor Cells. Gels. 2023 Jan 11;9(1):58. doi: 10.3390/gels9010058. PMID: 36661824; PMCID: PMC9858647.
  61. Yu S, Wang S, Xia L, Hu H, Zou M, Jiang Z, Chi J, Zhang Y, Li H, Yang C, Liu W, Han B. Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes. Int J Biol Macromol. 2022 May 31;208:159-171. doi: 10.1016/j.ijbiomac.2022.03.046. Epub 2022 Mar 14. PMID: 35301003.
  62. Song Y, Nagai N, Saijo S, Kaji H, Nishizawa M, Abe T. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:1-12. doi: 10.1016/j.msec.2018.02.022. Epub 2018 Mar 6. PMID: 29636124.
  63. Bellotti E, Fedorchak MV, Velankar S, Little SR. Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics. J Mater Chem B. 2019 Feb 28;7(8):1276-1283. doi: 10.1039/C8TB02976H. Epub 2019 Jan 25. PMID: 30931126; PMCID: PMC6437675.
  64. Zhu M, Wang J, Li N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery. Artif Cells Nanomed Biotechnol. 2018 Sep;46(6):1282-1287. doi: 10.1080/21691401.2017.1368024. Epub 2017 Aug 21. PMID: 28826241.
  65. Seo JS, Tumursukh NE, Choi JH, Song Y, Jeon G, Kim NE, Kim SJ, Kim N, Song JE, Khang G. Modified gellan gum-based hydrogel with enhanced mechanical properties for application as a cell carrier for cornea endothelial cells. Int J Biol Macromol. 2023 May 1;236:123878. doi: 10.1016/j.ijbiomac.2023.123878. Epub 2023 Mar 7. PMID: 36894057.
  66. Wong FSY, Tsang KK, Chu AMW, Chan BP, Yao KM, Lo ACY. Injectable cell-encapsulating composite alginate-collagen platform with inducible termination switch for safer ocular drug delivery. Biomaterials. 2019 May;201:53-67. doi: 10.1016/j.biomaterials.2019.01.032. Epub 2019 Feb 5. PMID: 30797114.
  67. Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A. Pharmaceutics. 2021 Feb 1;13(2):192. doi: 10.3390/pharmaceutics13020192. PMID: 33535607; PMCID: PMC7912864.
  68. Chen Q. An injectable thermosensitive hydrogel encapsulating tetramethylpyrazine nanocrystals alleviates angiogenesis and apoptosis in a choroidal neovascularization mouse model. Appl Mater Today.2023; 33:101867.
  69. Su W, Liu C, Jiang X, Lv Y, Chen Q, Shi J, Zhang H, Ma Q, Ge C, Kong F, Li X, Liu Y, Chen Y, Qu D. An intravitreal-injectable hydrogel depot doped borneol-decorated dual-drug-coloaded microemulsions for long-lasting retina delivery and synergistic therapy of wAMD. J Nanobiotechnology. 2023 Mar 1;21(1):71. doi: 10.1186/s12951-023-01829-y. PMID: 36859261; PMCID: PMC9976542.
  70. Awwad S, Abubakre A, Angkawinitwong U, Khaw PT, Brocchini S. In situ antibody-loaded hydrogel for intravitreal delivery. Eur J Pharm Sci. 2019 Sep 1;137:104993. doi: 10.1016/j.ejps.2019.104993. Epub 2019 Jul 11. PMID: 31302214.
  71. Abedin Zadeh M, Alany RG, Satarian L, Shavandi A, Abdullah Almousa M, Brocchini S, Khoder M. Maillard Reaction Crosslinked Alginate-Albumin Scaffolds for Enhanced Fenofibrate Delivery to the Retina: A Promising Strategy to Treat RPE-Related Dysfunction. Pharmaceutics. 2023 Apr 24;15(5):1330. doi: 10.3390/pharmaceutics15051330. PMID: 37242572; PMCID: PMC10224349.
  72. Thirupathi K, Phan TTV, Santhamoorthy M, Ramkumar V, Kim SC. pH and Thermoresponsive PNIPAm-co-Polyacrylamide Hydrogel for Dual Stimuli-Responsive Controlled Drug Delivery. Polymers (Basel). 2022 Dec 29;15(1):167. doi: 10.3390/polym15010167. PMID: 36616517; PMCID: PMC9823768.
  73. Khan MS, Ravi PR, Mir SI, Rawat PS. Optimization and in vivo evaluation of triamcinolone acetonide loaded in situ gel prepared using reacted tamarind seed xyloglucan and kappa-carrageenan for ocular delivery. Int J Biol Macromol. 2023 Apr 1;233:123533. doi: 10.1016/j.ijbiomac.2023.123533. Epub 2023 Feb 3. PMID: 36740111.
  74. Liu W, Tawakol AP, Rudeen KM, Mieler WF, Kang-Mieler JJ. Treatment Efficacy and Biocompatibility of a Biodegradable Aflibercept-Loaded Microsphere-Hydrogel Drug Delivery System. Transl Vis Sci Technol. 2020 Oct 13;9(11):13. doi: 10.1167/tvst.9.11.13. PMID: 33117605; PMCID: PMC7571288.
  75. Gade SS, Pentlavalli S, Mishra D, Vora LK, Waite D, Alvarez-Lorenzo CI, Herrero Vanrell MR, Laverty G, Larraneta E, Donnelly RF, Thakur RRS. Injectable Depot Forming Thermoresponsive Hydrogel for Sustained Intrascleral Delivery of Sunitinib Using Hollow Microneedles. J Ocul Pharmacol Ther. 2022 Jul-Aug;38(6):433-448. doi: 10.1089/jop.2022.0016. PMID: 35914241.
  76. Gao H, Chen M, Liu Y, Zhang D, Shen J, Ni N, Tang Z, Ju Y, Dai X, Zhuang A, Wang Z, Chen Q, Fan X, Liu Z, Gu P. Injectable Anti-Inflammatory Supramolecular Nanofiber Hydrogel to Promote Anti-VEGF Therapy in Age-Related Macular Degeneration Treatment. Adv Mater. 2023 Jan;35(2):e2204994. doi: 10.1002/adma.202204994. Epub 2022 Dec 11. PMID: 36349821.
  77. Goswami M, Sadasivam R, Packirisamy G. Viability studies of hydrogel contact lens on a 3D printed platform as ocular drug delivery carrier for diabetic retinopathy. Mater Lett. 2023; 333:133636.
  78. Sadasivam R, Packirisamy G, Goswami M. Biocompatible soft hydrogel lens as topical implants for diabetic retinopathy. Mater Lett. 2022; 318:132174.
  79. Ottonelli I, Bighinati A, Adani E, Loll F, Caraffi R, Vandelli MA, Boury F, Tosi G, Duskey JT, Marigo V, Ruozi B. Optimization of an Injectable Hydrogel Depot System for the Controlled Release of Retinal-Targeted Hybrid Nanoparticles. Pharmaceutics. 2022 Dec 21;15(1):25. doi: 10.3390/pharmaceutics15010025. PMID: 36678654; PMCID: PMC9862926.
  80. Taheri SL, Rezazadeh M, Hassanzadeh F, Akbari V, Dehghani A, Talebi A, Mostafavi SA. Preparation, physicochemical, and retinal anti-angiogenic evaluation of poloxamer hydrogel containing dexamethasone/avastin-loaded chitosan-N-acetyl-L-cysteine nanoparticles. Int J Biol Macromol. 2022 Nov 1;220:1605-1618. doi: 10.1016/j.ijbiomac.2022.09.101. Epub 2022 Sep 16. PMID: 36116595.
  81. Yaylaci S, Dinç E, Aydın B, Tekinay AB, Guler MO. Peptide Nanofiber System for Sustained Delivery of Anti-VEGF Proteins to the Eye Vitreous. Pharmaceutics. 2023 Apr 18;15(4):1264. doi: 10.3390/pharmaceutics15041264. PMID: 37111749; PMCID: PMC10141348.
  82. Li J. A novel, liposome-loaded, injectable hydrogel for enhanced treatment of choroidal neovascularization by sub-tenon’s injection. Mater Today Nano.2022; 20:100264.
  83. Acevedo-Jake A, Shi S, Siddiqui Z, Sanyal S, Schur R, Kaja S, Yuan A, Kumar VA. Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration. Bioengineering (Basel). 2021 Nov 23;8(12):190. doi: 10.3390/bioengineering8120190. PMID: 34940343; PMCID: PMC8698576.
  84. Fan W, Li S, Tao J, Yu C, Sun M, Xie Z, Wu X, Ge L, Wu Y, Liu Y. Anti-Vascular Endothelial Growth Factor Drug Conbercept-Loaded Peptide Hydrogel Reduced Angiogenesis in the Neovascular Age-Related Macular Degeneration. J Biomed Nanotechnol. 2022 Jan 1;18(1):277-287. doi: 10.1166/jbn.2022.3227. PMID: 35180922.
  85. Hashida N, Nishida K. Recent advances and future prospects: Current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev. 2023 Jul;198:114870. doi: 10.1016/j.addr.2023.114870. Epub 2023 May 10. PMID: 37172783.
  86. Jaffe GJ, Martin D, Callanan D, Pearson PA, Levy B, Comstock T; Fluocinolone Acetonide Uveitis Study Group. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study. Ophthalmology. 2006 Jun;113(6):1020-7. doi: 10.1016/j.ophtha.2006.02.021. Epub 2006 May 9. PMID: 16690128.
  87. Costello MA, Liu J, Wang Y, Qin B, Xu X, Li Q, Lynd NA, Zhang F. Reverse engineering the Ozurdex dexamethasone intravitreal implant. Int J Pharm. 2023 Mar 5;634:122625. doi: 10.1016/j.ijpharm.2023.122625. Epub 2023 Jan 20. PMID: 36690129.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

  • Hydrogel-Based Formulations for Drug Delivery to the Posterior Segment of the Eye
    AmirHossein Bahmanpour, Maryam Mollazadeh-Bajestani, Maryam Ghaff ari, Fathollah Moztarzadeh and Azadeh Sepahvandi* AmirHossein Bahmanpour,Maryam Mollazadeh-Bajestani,Maryam Ghaff ari,Fathollah Moztarzadeh,Azadeh Sepahvandi*. Hydrogel-Based Formulations for Drug Delivery to the Posterior Segment of the Eye. . 2023 doi: 10.29328/journal.abse.1001024; 7: 038-050

Recently Viewed

Read More

Most Viewed

Read More

Help ?