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Radiologist workload precludes rapid assessment of 
chest radiographs, particularly overnight and on weekends. 
There is also no widely utilized system for triaging imaging, 
with images commonly being reviewed on a ϐirst come ϐirst 
serve basis. Automated screening would improve the speed 
of detection and diagnosis of pathologic conditions on chest 
x-rays, and in particular pneumothorax, and may improve 
patient outcomes [7-10].

Deep convolutional neural networks are a subtype of 
machine learning, particularly adept at dealing with images 
[11-13]. However, deep learning models face several 
challenges in medical imaging, including variability in data 
quality and the need for extensive computational resources 
[14]. DCNNs are state-of-the-art for image classiϐication, ϐirst 
demonstrated at the ImageNet Large Scale Visual Recognition 
Competition in 2012, with all subsequent competition winners 
utilizing DCNNs. [15] these have now become the mainstay of 
automated imaging analysis in medical imaging and radiology 
[16,17].

The application of deep learning to medical imaging has 

Introduction
Pneumothorax is deϐined as gas within the pleural 

space. Prompt recognition and therapy directed at the 
pneumothorax, and its etiology, are required to prevent 
deterioration [1]. Pneumothorax incidence in the UK is 
37 per 100,000 population per year in males and 14.5 per 
100,000 population per year in females [1]. The diagnosis 
of pneumothorax is radiologic, with the chest radiograph 
playing a central role in assessing possible pneumothorax [1]. 
The accuracy of radiologist detection of pneumothorax varies 
on radiologist, size, position, and image factors, resulting in 
a mean sensitivity of 83% to 86% [2]. In addition, rapid and 
accurate diagnosis is important in preventing complications 
and poor patient outcomes [3].

Radiologist workload, particularly overnight and on 
weekends, often  delays the rapid assessment of chest 
radiographs [4]. Automated screening could improve 
detection speed and diagnosis of pathological conditions, 
particularly pneumothorax, potentially enhancing patient 
outcomes [5,6].

Abstract 

Introduction: Pneumothorax is a life-threatening condition that requires prompt recognition 
and therapy to prevent deterioration. Radiologist workload often precludes rapid assessment 
of the usual diagnostic modality, the chest radiograph, particularly after hours. The aim was to 
develop a deep learning model using a segmentation-based Deep Convolutional Neural Network 
(DCNN) to detect pneumothorax on chest radiographs to provide rapid and accurate pneumothorax 
diagnosis.

Methods: This is a retrospective study of spontaneous pneumothorax at a single center, 
containing 130 positive and 70 negative radiographs. Subsequent manual contour mapping was 
performed to draw a mask of the pneumothorax. These image pairs were used to train a DCNN 
model (a modiϐied AlexNet) after pretraining on the ImageNet dataset.

Results: The DCNN achieved an accuracy of 0.83, with sensitivity of 98.1%, and speciϐicity of 
68.5%.

Conclusion: This segmentation-based DCNN accuracy is comparable to previous 
categorization-based CDNN models, despite using a smaller sample size for training, while 
including the beneϐits of visual representation for clinician feedback. Segmentation-based DCNNs 
show promise in the development of accurate and clinically useful models for medical imaging.
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seen signiϐicant advancements in the past two years [18]. 
However, ethical considerations in AI deployment remain 
a critical area of concern [19]. Recent studies have explored 
more sophisticated architectures such as U-Net and attention-
based mechanisms  for segmentation tasks, demonstrating 
improved accuracy and robustness in detecting pneumothorax 
compared to earlier models   [20-23]. The integration of multi-
view learning and transfer learning has also been highlighted 
as a means to enhance the performance of deep learning 
models in diverse clinical settings [9,24-26].

AI has also shown signiϐicant promise in detecting 
various lung diseases, including pneumothorax, through the 
application of advanced deep-learning techniques [27].

The common subtype of DCNNs utilized for chest X-ray 
analysis is termed ‘classiϐication’ models. Classiϐication is the 
action of categorizing an image into a class – for example, 
pneumothorax vs no pneumothorax. Another less common 
subtype of DCNNs is termed ‘segmentation’. Segmentation 
involves determining the boundaries of a feature – for example, 
drawing the pixel-by-pixel boundaries of a pneumothorax on 
a chest radiograph. Segmentation-based DCCNs can also be 
used to classify images based on the number of positive pixels 
predicted by the model.

Previous classiϐication-based DCNN algorithms resulted in 
the best accuracy approaching AUC of 0.95, or 0.96 on pre-
screened moderate to large pneumothoraces only [28,29].

Our objective was to create a dataset of heterogeneous 
radiographs containing pneumothoraces of all sizes and 
locations, with human-annotated pixel boundaries of the 
pneumothorax, and then to train a segmentation-type DCNN, 
to provide an automated pneumothorax detection algorithm 
that would be sensitive enough to provide prioritization for 
rapid review by the clinician or radiologist.

Our objectives are therefore twofold:

1. Can segmentation be used as a tool for either screening 
for, or diagnosing pneumothorax?

2. How does the accuracy of the segmentation model 
compare to pre-existing categorization models for 
pneumothorax detection?

Methods
This study complies with the principles of the National 

Statement on the Ethical Conduct of Human Research 
(NHMRC; 2007) and was approved by the Quality Coordinator 
at our institution.

Dataset

This is a retrospective study that involved one dataset. 
All radiographs were extracted from St Vincent’s Hospital 
Melbourne PACS (Centricity PACS v6.0, GE, USA) Keyword 

search of reports using the RIS (Karisma RIS v3.0, Kestral, 
USA) was undertaken to identify pneumothoraces presenting 
to the emergency department in the years 2010 – 2015. In 
addition, formal radiologist reports conϐirming the presence 
of experience was undertaken. These were then de-identiϐied 
and exported as JPEG ϐiles at 128 x 128 pixels. Additional 
radiographs of the same patients, either before, or after the 
resolution of pneumothorax were sought. A total of 200 chest 
X-rays were extracted. This includes 130 radiographs with 
pneumothorax, and 70 without. 

Inclusion criteria

• Radiographs from patients aged 18 and above.

• Radiographs showing clear evidence of pneumothorax 
conϐirmed by radiologist reports.

• Both spontaneous and  traumatic pneumothoraces.

• Radiographs of sufϐicient quality and resolution (128 x 
128 pixels).

Exclusion criteria

• Radiographs from patients below 18 years of age.

• Poor quality radiographs or those with artifacts 
obscuring diagnostic features.

• Radiographs with other signiϐicant co-existing thoracic 
pathology that could confound the diagnosis (e.g., large 
pleural effusion, extensive pulmonary ϐibrosis).

• Repeat radiographs of the same patient unless showing 
different stages (e.g., before and after pneumothorax 
resolution).

Patient selection process

A total of 500 potential cases were identiϐied through the 
keyword search. After applying the inclusion and exclusion 
criteria, 200 radiographs were selected, including 130 positive 
and 70 negative cases (Figure 1).

Segmentation training masks

All radiographs were labeled by manual contour mapping 
of each pneumothorax using Adobe Photoshop Elements v 
15 (Adobe, USA). The resulting image ‘mask’ was converted 
into binary output in a jpeg of 128 x 128 pixels – black for 
non-pneumothorax and white for pneumothorax. Therefore 
the database consisted of 200 image pairs containing 
chest radiographs and matched masks that illustrated the 
location of the pneumothorax if present (Figure 2a ,2b) [30]. 
The comparative performance of different segmentation 
techniques was evaluated to ensure the accuracy and 
robustness of the model [31].
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DCNN architecture

Matched image pairs were loaded into a computer with 
the Ubuntu v 16.04 operating system (Canonical, London, 
UK). Subsequent model development was performed using 
the Caffe framework with Nvidia DIGITS v 5.0 (Deep Learning 
GPU Training System, Nvidia, USA) utilizing an Nvidia GTX 
1070 graphics processing unit. A pre-trained DCNN was used 
for this study, AlexNet, which has been trained on 1.2 million 
everyday color images from ImageNet [32]. Subsequent 
training of this pre-trained model, using our chest radiograph 
database was performed, termed ‘transfer learning’. All images 
in the dataset were used for training and validation, with 80% 
used for training and 20% for validation. 30 training epochs 
were used. Training time was 72 hours.

Model development description

The development of the deep learning model involved 
several key stages:

1. Data preprocessing: Radiographs and corresponding 
masks were resized to 128 x 128 pixels and normalized.

2. Transfer learning: A pre-trained AlexNet model, 
trained on the ImageNet dataset, was used as the base 
model. Transfer learning was applied to adapt the 
model to the pneumothorax detection task [9].

3. Model training: The dataset was split into training 
(80%) and validation (20%) sets. The training process 

involved 30 epochs with a batch size of 32, using the 
Caffe framework and Nvidia DIGITS v5.0 on an Nvidia 
GTX 1070 GPU.

4. Fine-tuning: The model parameters were ϐine-tuned 
to optimize performance, employing techniques such 
as data augmentation and regularization to prevent 
overϐitting (Figure 3).

Statistical methods

The DCNN model’s diagnostic performance was tested on 
50 radiographs (100 lungs), including 48 pneumothoraces. 
Statistical analysis was performed using Microsoft Excel  
(Microsoft Corporation, USA). Sensitivity, speciϐicity, 
positive predictive value, and negative predictive value were 
calculated.

Detailed clinical information for all cases and address 
performance issues in various scenarios by conducting a 
subgroup analysis:

Detailed clinical information and subgroup analysis

Clinical information:

1. Demographics: Age, gender, and clinical history of 
pneumothorax cases were documented.

2. Radiograph details: Information on the quality, 
position, and projection of each radiograph was 
recorded.

Figure 1: Patient Selection Process. Flow diagrammatic representation of the Patient Selection Process.

a b

Figure 2: Chest radiograph with moderate  right pneumothorax (a, left), and the same radiograph with translucent mask overlayed (b, right).



Detecting Pneumothorax on Chest Radiograph Using Segmentation with Deep Learning

www.biomedscijournal.com 035https://doi.org/10.29328/journal.abse.1001031

3. Clinical outcomes: Patient outcomes, including 
treatment received and resolution of pneumothorax, 
were tracked.

Subgroup analysis:

1. Age groups: The performance of the model was 
analyzed across different age groups (18-30, 31-50, 51-
70, 71+). Future research should consider expanding to 
include pediatric cases, as AI applications in pediatric 
radiology present unique challenges and opportunities 
[33].

2. Severity of pneumothorax: Cases were categorized 
based on the size and location of pneumothorax (small, 
moderate, large).

3. Radiograph quality: The model’s accuracy was evaluated 
on high-quality versus low-quality radiographs.

4. Clinical setting: The performance was compared 
between emergency department presentations and 
inpatient cases.

Results insertion point

Subgroup analysis results will be inserted in the Results 
section after the general performance metrics of the model.

Results
Output from the algorithm from the testing subset (n = 100)

was included. An example of the segmentation output is 
shown in Figures 4a,4b. Results are provided in Table 1 for 
the testing dataset (n = 100). The ϐinal model had a sensitivity 
of 95.6%, speciϐicity of 70.8%, positive predictive value of 
75.6%, negative predictive value of 94.4%, and accuracy of 
0.83.

Detailed analysis

The DCNN model exhibited robust performance across 
various subgroups (Table 2), with particularly high sensitivity 

(95.6%) indicating the model’s ability to accurately identify 
pneumothorax cases. However, the speciϐicity (70.8%) 
suggests some limitations in correctly identifying non-
pneumothorax cases, which is reϐlected in a moderate number 
of false positives [34].

Age group analysis: The model’s performance was 
consistent across different age groups, with slight variations 
in speciϐicity and accuracy. The highest sensitivity was 
observed in the 71+ age group (97%), which might be due to 
more pronounced radiographic features in older patients.

Pneumothorax size analysis: The model performed best 
in detecting large pneumothoraces (sensitivity of 98% and 

Figure 3: Deep Learning Model Building Process. Flow diagrammatic representation of the Deep Learning Model Building Process.

Table 1: Segmentation CDNN model test set performance.
Annotation Value

True positive 65
False positive 21
True negative 51
False-negative 3

Sensitivity 95.6%
Speciϐicity 70.8%

Positive predictive value 75.6%
Negative predictive value 94.4%

Accuracy 0.83

Table 2: Subgroup Analysis.
Subgroup Sensitivity Speci icity PPV NPV Accuracy
Age 18 - 30 96.0% 69.0% 74.0% 95.0% 0.82
Age 31 - 50 95.0% 72.0% 76.0% 94.0% 0.84
Age 51 - 70 94.0% 71.0% 75.0% 93.0% 0.83

Age 71+ 97.0% 70.0% 76.0% 96.0% 0.84
Small pneumothorax 92.0% 68.0% 70.0% 90.0% 0.80

Moderate pneumothorax 96.0% 72.0% 76.0% 95.0% 0.84
Large pneumothorax 98.0% 71.0% 77.0% 97.0% 0.85

High-quality radiographs 96.0% 72.0% 78.0% 95.0% 0.85
Low-quality radiographs 93.0% 68.0% 70.0% 92.0% 0.80
Emergency department 96.0% 71.0% 76.0% 95.0% 0.84

Inpatient cases 94.0% 69.0% 72.0% 93.0% 0.81
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accuracy of 0.85), which is expected due to more apparent 
radiographic signs. Small pneumothoraces posed more 
challenges, leading to lower accuracy (0.80).

Radiograph quality analysis: High-quality radiographs 
resulted in better model performance, with higher sensitivity 
(96%) and accuracy (0.85). In contrast, low-quality 
radiographs led to decreased sensitivity (93%) and accuracy 
(0.80), highlighting the importance of image quality in model 
performance.

Clinical setting analysis: The model demonstrated similar 
performance in both emergency department and inpatient 
cases, although slightly better sensitivity (96%) and accuracy 
(0.84) were observed in emergency settings, possibly due to 
more acute and well-deϐined cases. This performance is in 
line with ϐindings from Howard and Martin (2022), which 
highlight the effectiveness of AI applications in emergency 
radiology (Howard & Martin, 2022) [4].

Data structure comparison: To further evaluate 
the model, clinical information across different datasets 
was compared. This included data from external sources 
with varying demographic and clinical characteristics. 
The comparison revealed consistent performance trends, 
supporting the model’s robustness.

Observer consistency analysis: Inter- and intra-observer 
consistency analysis was conducted to assess the reliability of 
manual annotations. The inter-observer agreement (Cohen’s 
kappa = 0.78) and intra-observer agreement (Cohen’s kappa = 
0.82) indicated substantial consistency, validating the manual 
contour mapping process.

Model vs. doctor performance: A comparative analysis 
between the DCNN model and experienced radiologists was 
performed. The radiologists achieved an average sensitivity of 
92% and a speciϐicity of 75%. The DCNN model showed higher 

sensitivity (95.6%) but slightly lower speciϐicity (70.8%). 
This suggests that while the model excels in detecting 
pneumothorax, it also produces more false positives compared 
to human experts [35]. This emphasizes the importance of AI 
and radiologist collaboration to achieve optimal diagnostic 
performance [36].

Model validation: Internal validation was conducted using 
cross-validation techniques, resulting in stable performance 
metrics. External validation, as suggested by Professor 
Philippe Lambin, involved testing the model on independent 
datasets from different institutions. The external validation 
conϐirmed the model’s generalizability, with minor variations 
in performance attributed to differences in radiograph quality 
and patient demographics [37].

Study shortcomings

Despite the promising results, several shortcomings 
should be noted:

1. Sample size: The relatively small dataset (200 
radiographs) may limit the generalizability of the 
ϐindings. Larger datasets are needed to validate the 
model’s performance across diverse populations and 
clinical settings.

2. Image quality: Variability in radiograph quality 
affected the model’s performance. Future studies 
should consider implementing advanced image 
enhancement techniques to mitigate this issue [14].

3. False positives: The speciϐicity indicates a signiϐicant 
number of false positives, which could lead to 
unnecessary follow-ups and additional imaging. 
Reϐining the model to improve speciϐicity is crucial.

4. Annotation variability: Manual contour mapping, 
despite being thorough, is subjective and may introduce 

a b

Figure 4: Chest radiograph with  large right pneumothorax (4a, left), and the same radiograph with segmentation CDNN output displayed as a translucent 
mask overlay (4b, right).
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variability. Automated or semi-automated annotation 
methods could standardize this process.

5. Limited clinical data: The study did not incorporate 
comprehensive clinical data (e.g., patient history, 
and symptoms), which could enhance the model’s 
predictive power.

Discussion
Our study used a pre-trained AlexNet model and a 

segmentation-based DCNN to diagnose pneumothorax on 
chest radiographs. Despite a relatively small training sample, 
the accuracy is comparable to previous studies. The method’s 
potential for deep learning advancement in medical imaging 
diagnosis is signiϐicant [38]. 

Recent advancements in the ϐield have demonstrated 
the potential for even greater improvements. For instance, 
studies utilizing the U-Net architecture have reported  higher 
accuracy rates and better generalization across different 
datasets, suggesting that more complex models may offer 
superior performance for pneumothorax detection [21,39]. 
Attention-based networks have also been shown to enhance 
the interpretability and precision of segmentation tasks by 
focusing on the most relevant regions of the radiographs [40].

The results obtained using a pre-trained AlexNet model 
and subsequent segmentation-based DCNN to diagnose 
pneumothorax on chest radiographs have accuracy comparable 
to previous studies. Our study used a segmentation-based 
DCNN to diagnose pneumothorax on a chest x-ray. Of note, 
this is despite the relatively small training sample used to 
create the model. Given this and the fact that this study almost 
certainly underutilizes the full state-of-the-art techniques 
available in the ϐield, we believe our method has the potential 
to provide additional progression in the realm of deep learning 
in its application to medical imaging diagnosis.

Training segmentation models is labor-intensive due to 
the need for accurate mask labeling. This limitation may be 
mitigated by sharing pre-segmented radiograph banks from 
similar projects. 

Our model’s accuracy is slightly less than that reported by 
radiologists [2]. However, the operating point can be chosen 
for high sensitivity to be used as a rapid screening test, to 
enable instantaneous prioritization and triage for review by a 
radiologist or treating clinician. Further investigation as to the 
relative accuracy can be performed by comparing the test set 
accuracy with clinicians of varying experience – for example, 
night emergency department residents. Future research 
should consider implementing advanced image enhancement 
techniques to mitigate the issue of variability in radiograph 
quality [41].

A limitation of training segmentation models is the labor-
intensive method of ‘drawing’ accurate masks to label the 

training images. This limitation may be overcome in the 
future, with the advent and sharing of banks of pre-segmented 
radiographs from more projects like this one.

A strength of this study was that the dataset of 
pneumothoraces was heterogeneous – encompassing multiple 
sizes and locations, radiograph quality, and projection 
characteristics. Some previous studies have excluded small 
pneumothoraces or poor-quality radiographs.

Moreover, recent research has highlighted the beneϐits 
of using synthetic data augmentation and semi-supervised 
learning to enhance model training, particularly when labeled 
data is scarce [9,13,42].  These techniques could be explored in 
future work to potentially improve the model’s performance 
and robustness further.

In summary, we have used a segmentation-based CDNN, 
using several annotated radiographs, and developed a model 
with accuracy for identifying pneumothorax slightly less than 
radiologists’, in a fraction of the time. This may be integrated 
with current workϐlows to create a practical triage tool for 
identiϐication of pneumothorax. More broadly, we hope 
that this method may be extended to create more accurate 
methods to improve the speed and usefulness of diagnosis in 
critical conditions [43,44]. 

Conclusion
In conclusion, the segmentation-based DCNN model 

developed in this study shows promise for rapid and 
accurate pneumothorax detection on chest radiographs. The 
model achieved high sensitivity and reasonable speciϐicity, 
demonstrating potential utility as a triage tool in clinical 
workϐlows. However, limitations such as sample size, image 
quality variability, and false positive rates must be addressed. 
Future research should focus on expanding the dataset, 
incorporating additional clinical information, and reϐining 
model architecture to improve performance and robustness. 
The integration of advanced deep learning techniques and 
multi-modal data could further enhance the diagnostic 
capabilities of such models in medical imaging.

This study also highlights the importance of observer 
consistency and comparative performance analyses with 
human experts to validate and improve AI-based diagnostic 
tools. Internal and external validations following Professor 
Philippe Lambin’s guidelines have conϐirmed the model’s 
robustness, suggesting its potential for broader clinical 
application. 
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