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Nomenclature
 ~ z    : Relative twist rotation of the cross-sections; 

d / d   : Torsion angle, This is also denoted by “λ”. It is a 
constant;  ˆzk 


: Twist angle of cross-sections of bar about 

z-axis; ˆd dzk 


:Inϐinitesimal twist of two neighboring 
cross-sections distance dz; ϕ(x,y): Warping function; s :  
Deformation dyadic (tensor); È{z( )   y   x}ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆs i j j i k i k j    

 :
Displacement dyadic is given In Orthonormal three vectors 
set; ( ˆ ˆs i x)jz y  


: displacement vector ϐield for torsion; 

 1 / 2 S S    
 

: Self-conjugate part (strain tensor); 

Abstract 

The torsional deformation behavior of an elastic bar with a circular cross-section was investigated by 
applying invariant dyadic analysis, where the small ϐinite displacement functions advocated by Saint-Venant 
(1855) were fully employed. It was found that the previously overlooked circumferential shear force ϐield 
generated by pure torsion on the side walls of a bar produces an unusual torque term induced by the skew-
symmetric part of the deformation tensor and exhibits quadratic length dependence along the z-axis of the 
bar. The adaptation of this torque term for a helical conformation of α-peptides creates moments acting on the 
circular cross-sections and is directed along the surface normal of circular cross-sections, which coincides with 
the tangent vector of the helix. The projection of this torque along the z-axis of the helix varies quadratically with 
the azimuthal angle. The radial component of the unusual torque, which also lies along the principal normal 
vector of the helix, starts to perform a precession motion by tracking a spiral orbit around the z-axis, whereas 
its apex angle decreases asymptotically with the azimuthal angle and ϐinally reaches a ϐinite value depending on 
the height of the helix along the z-axis. The ordinary torque terms, which are also deduced from the self- and 
anti-self-conjugate parts of the deformation tensor, have magnitudes half that of the full torque term reported in 
the literature. The present results were applied to the helical conformation of α-peptides designated by {3.611} 
to show that the mechanical stability of strained open-ended helical conformations can be successfully achieved 
by spontaneous readjustments of the surface and bulk Helmholtz free energies under isothermal isochoric 
conditions. It has been demonstrated that the main contribution to the mechanical stability of α-peptide 3.611 
cannot come alone from the electrostatic dipole-dipole interaction potential of the anti-align excess dipole pairs 
but also from the surface Helmholtz free energy, which is characterized by a binding free energy of -15.5 eV/
molecule (-32.56 Kcal/mole) for an alpha-peptide composed of 11 amino acid residues with a critical arc length 
of approximately 10 nm, assuming that the shear modulus is G = 1GPa and the surface Helmholtz speciϐic free 
energy density is fs = 800 erg/cm2. This result was in excellent agreement with the experimental observations of 
the AH-1 conformation of (Glu)n Cys at pH 8. The present theory indicates that only two excess permanent anti-
align dipole pairs for one α-Helical peptide molecule is requirement to stabilize the whole secondary structure 
of the protein that is exposed to heavy torsional deformation during the folding processes which amounts to 
7.75 eV/molecule stored electrostatic energy compared to the interfacial Helmholtz free energy of -23.25 eV/
molecule, which is exposed to hydrophobic environments.
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with the Cylindrical side- walls force ϐields (i.e., an unusual 
torque term); t̂ : Local tangent vector of helix; b̂ : Binormal 
of helix; /ˆ ˆd d nb    “λ”Torsion of helix; λ=(1/R) sin β cos β: 
Torsion of simple helix; ˆ ˆ/dt d n : “k” curvature of helix; β: 
Inclination angle of helix; R: Radius of helix; /   

 d dl t : 


Vector describes the rate of variation of the twist Angle   
per unit arc length;   


Mod : The torsion angle called by 

Landau & Lifshitz; G: Shear modulus or modulus of rigidity; 
μ: Mobility in the Einstein-Nernst equation; a: radius of the 
helical skeleton;  : Arc length of the helical skeleton; τ: 
Relaxation time; ( )TFS  : Surface Helmholtz free energy of 
helical form; fs: Speciϐic Helmholtz surface free energy;  FG 

: Global Helmholtz free energy;  FB  : Bulk Helmholtz 
free energy;  FS  : Change in the surface Helmholtz free 

energy;  F VChem : Chemical bulk Helmholtz free energy; 
 FMech  : Mechanical bulk Helmholtz free energy; SIn : 

Change in the internal entropy; FG : Change in the Helmholtz 
free energy; / 1 / / 0GS t T F tInt G        : Planck (1887) 
criterion combined with the positive deϐinite internal entropy 
hypothesis Isochoric isothermal changes for closed system; 

( , )F a  : Global Helmholtz function for extremum problem; 
( , )V ao  : Volume of backbone skeleton;  ,a  : Enlarged 

function for extremal solution; x: Lagrange Multiplier; * ,
a*: Stable arc length and radius; Eb: Binding energy or 
extremal Helmholtz free for the Non-equilibrium stationary 
State; * *5.769  5.772F and GG G      : Extremum values of 
Helmholtz and Gibbs energy Barriers for critical nucleation of 
α-peptide 3.611; * = 0.59,0.56:  Critical nucleation arc length 
for the α-peptide 3.611; ( )BFM  : Helmholtz free energy due to 
pure bending; Mb: Bending moment of amino acid skeleton; 
E: Young modulus of elasticity; v: ultrasonic longitudinal 
propagation velocity; ν: Poisson’s ratio; ρ: Volumetric density;  
∇ FG: Global Helmholtz free energy;  ∇ GG: Global Gibbs free 
energy; '  

V
d d : Dipole-dipole potential energy; 'd , d: 

Electrostatic dipole vectors; ∈0:  Dielectric constant; F


: Force; 
M: Moment; C : Rotational rigidity due to the circumference 
Shear force ϐield at the cylindrical wall; I: Section moment of 
inertia Dielectric constant;   Ed d   : Interaction potential 
between dipole pairs Negative for Anti-align Positive for 
on-align pairs; δ: Variation operator; x: Lagrange Multiplier; 
 ,a  : Lagrangian Function for the extremal solution; * ,

a*: Stable arc length and helical radius; *FG : Binding free 
energy of the helical conformation; M: Angular moment of 
helix; Q: shear force; I: Moment of inertia; ω: Angular velocity 
of section along arc length; φ : Twist angle along the arc length; 
C : Rotational rigidity; Q: Shear

Introduction
In this work, we have to place special emphasis on the 

anti-self-conjugate part of the deformation tensor (dyadic) 
associated with a simple helical linear elastic body with 
circular cross-sections, which is exposed to pure torsional 
and bending moments. The re-examination of this historical 

problem related to the pure torsional deformation of a solid 
bar is important because of the underestimated role of the 
non-vanishing shear force ϐield directed along the tangential 
orientation of the circumferences of the cylindrical sidewalls 
of the solid bars and helical conformations. Unfortunately, 
not only the shear surface force ϐield but also the anti- self-
conjugate part of the deformation tensor arising from the 
proposed pure torsional displacement ϐields by Saint-Venant 
[1] (1855) have been completely neglected in the li terature [2-
5]. These incidents have occurred repeatedly in  the literature, 
mainly because while people are trying to ϐind approximate 
solutions for the Airy differential equations associated 
with the stress function arising from the arbitrarily shaped 
cross-sections exposed to wrapping, they have intentionally 
adapted the free surface boundary conditions to simplify the 
approximate treatments of boundary value problems.

One can easily prove that the self-conjugate strain 
dyadic deduced from the deformation tensor obtained from 
the Saint-Venant displacement ϐield can rigorously obey 
the compatibility requirements. This sidewall shear force 
ϐield in the treatment of the skew-symmetric part of the 
deformation tensor appears to be rotational in character and 
can be represented by a torque term such as   F  r 0dA  

   
with respect to the center of mass (c.m.) of the circular cross-
sections. In addition, these shear circumference forces owing 
to the circular symmetry of the cross-sections result in zero 
contribution  F 0dA 


to the global force balance equation, 

but not to the torque global balance. Therefore, it is necessary 
to consider the overlooked secondary facts in the complete 
treatment of this problem. The present results, when applied 
to the helical conformations of peptides in collaboration with 
the irreversible thermodynamics postulates, show that the 
stored or residual elastic deformation energy density due to 
the unusual new torque term can counteract the surface and/
or the electrostatic monopolar and dipole–dipole interaction 
energies to create a mechanism for the desired absolute 
conϐigurational stability of the helix with a critical size and 
binding free energy for a well –deϐined arc length under 
isothermal isochoric conditions. This phenomenological 
situation relies on the fundamental postulate that, which 
indicates that any increase in the Helmholtz surface free 
energy of an isochoric closed system by the enlargement of its 
surface area results in a simultaneous reduction in the stored 
elastic strain energy content of the body [6-8]. The validity 
of this hypothesis has also been rigorously justiϐied by the 
formulation of the contributions of the electrostatic dipole–
dipole interaction potential to the Helmholtz and Gibbs 
volumetric speciϐic free energies, where the anti-align pairs 
[⇑⇓] enter into the scenario with negative and positive signs, 
respectively, for the isochoric and isobaric systems.

Electrostatic dipole-dipole interaction potential 
contribution for given helical peptide chain is directly 
proportional with the excess number of anti-align [⇑⇓] 
permanent dipole pairs -that are mostly present in the steroid 
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rings of the Peptide skeleton together with align- pairs [⇑⇓]- 
and generates a negative new term in the Global Helmholtz 
free energy balance equation in such way that its magnitude 
changes linearly with the arc length having a negative sign 
similar to the ordinary Helmholtz surface free energy. This 
is quite contrary to the alignment pairs because they enter 
the scenario with a positive sign, which inhibits mechanical 
stability under isochoric and isothermal conditions. 

As a byproduct of the present theory, isobaric growth 
thermokinetics of the helical peptide conformation are 
formulated under torsional and bending deformation stress, 
which indicates that there is an activation Gibbs free energy 
barrier for the growth of critical nuclei that can only be 
surmounted by large thermal ϐluctuations. However, this 
situation can be mediated by an excess number of online 
[⇑⇓] dipole pairs created at elevated temperatures because 
of permanent dipole orientation switching through localized 
temperature ϐluctuations (local melting). This process 
reverses the contribution of electrostatic D-D interaction 
potential to the global Gibbs free energy.

Torsion of a circular bar

The torsional small displacements (twist) of a straight 
bar with arbitrary cross-sections were ϐirst introduced by 
Saint-Venant (1855) and later formulated by Timoshenko 
and Goodier [4] and Landau and Lifshitz [5], s uch as 

,    u zy u zxx y  and  , .  u x yz Where the cross-
section warping function  ,x y is also discussed in detail 
and proven to be zero for circular cross-sections. When 
necessary, we used a cylindrical coordinate system, namely 
{r, θ, z}. Set ˆ{ , }r r denotes the unit and radial position vectors 
in the circular cross-sections, respectively. While maintaining 
the second author’s universal vectorial expression for the 
inϐinitesimal rotation u r s   

   formally [5], one may
write d own the relative torsional deformation of two 
neighboring cross-sections at a distance dz by ˆ[ ]  d dzk
where ϕ is the twist angle and Θ is the torsion angle which 
is  the angle of rotation per unit length of the bar, namely Θ = 
dϕ/dz . If we assume that the torsion angle is constant, δΘ = 0 
for those cross-sections located at any distance z from the xy-
reference plane, which is the undeformed z = o plane (origin) 
situated at the bottom or top ends of the bar and whose 
surface normal direction coincides with the z-axis, denoted 
by the unit vector. The integration of the above expression 
from the origin z = 0 to any arbitrary point along the z-axis 
is denoted by z, which results in ˆ ˆ  0 0

       
 zd dz k zk .

In the present case, the torsional deformation of the bar was 
approximately along the z-axis, which is indicated by k̂ . It 
can be proven that above the given vectorial equation for the 
inϐinitesimal format with the newly formulated argument, it 
may be transformed into  ˆ   

 zk ru s , and then may be 
evaluated exactly; ˆ ˆ ( )            

  s u z k r z i y j x  without 
making any approximation, such as the smallness of the 
torsion, provided that the torsion angle Θ remains constant. 

This torsional deformation causes the generators on the sides 
of the bar, which are initially parallel to its axis, to become 
circular simple helices in the form r(z) =R{cos, sin, cot }



and 
cutting the generators at a constant inclination angle, denoted 
by β “torsion angle.” where one has additional parameters, 
such as the twist angle  = z  , and R is the radius of the 
circular bar [9].

Now, we have assumed that the torsion angle is very small 
but constant; therefore, one can use the heterogeneous small-
strain theory of elasticity [10] for the further development 
of the torsional deformation theory using dyadic vector 
algebra. One may write the nonion form of the deformation 
dyadic exactly from the given displacements in dyad format 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ{z(i j-j i) k i y+k j x}   
s  where  ˆ ˆ ˆi , j, k  is an orthonormal 

arbitrary set of three vectors, which is the choice of 
convenience attached to the circular cross-section of the bar 
in such a way that k̂ k-unit vector acts as a surface normal 
vector of the clamped bottom end of the bar. We can easily 
form the self-conjugate  1 / 2 s s    

   and anti-self-
conjugate parts  1 / 2 s s    

   of the strain dyadic. Where 
 1 / 2    
 s s is the small-displacement vector ϐield. They 

may be clearly represented by the matrix or nonion format 
because the components are explicitly given through the 
displacement functions. 

0 0 0 2
1 / 2 0 0 ,   1 / 2 2 0

0 0


  
      

   

   
   
      

y z y
x z x

y x y x    

(1)

Where the ϐirst dyadic corresponds to so-called strain 
tensor, which is symmetric and can be proven [10] that it 
satisϐies the compatibility conditions for the uniqueness of 
the static elastic equilibrium solutions, 0    [10,11]. 
The second dyadic corresponds to a skew-symmetric part 
of the deformation d y adic called the anti-self-conjugate. One 
can show that This skew-symmetric dyadic may be written as 

 1 / 2    I s    
 , which implies that there is a vortex motion 

represented by the angular rotation vector 1 / 2  s   
   = [1/2 

curl  s ] whose circular measure is mod W


. Here, the rotation 
is represented by du dr  

  for a small displacement in 
the vicinity of the origin. Here, I is an idempotent or unit 
dyadic, which has a nonion form ˆ ˆ ˆ ˆ ˆ ˆ i i j j k kI    . Because 
all the components are shear in character, the connection 
between the deformation and stress dyadic for an isotropic 
elastic solid involves only a single scalar constant, which is 
the shear modulus of elasticity or modulus of rigidity denoted 
by G [2]. Therefore, we can perform all operations using the 
deformation tensor symbolically, and at the end multiplied 
by G as shown in Figure 1 explicitly, we obtain the results 
in terms of torque or force with proper dimensions. In our 
formulations, we only use two static mechanical equilibrium 
conditions for a rigid body because the strain tensor already 
satisϐies the compatibility conditions necessary for the 
uniqueness of the elastic solutions, which are the global force 
and torque balance equations,   [11] respectively, are given by: 
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ˆ ˆ .( ) .( )   0G k dA G r dS FdV FEnd Wall FixEnd           
 

 

Force   (2)

And

       ˆ ˆ ˆ  .   .     0.0G r k dA G r zk r dS r FdV MEnd Wall FixEnd               
    

Torque (3)

Here, dA =  r  dθ  dr and dS = a dθ dz are inϐinitesimal areas 
selected for the integration procedures, associated with 
the top free-end cross sections  and side walls of the bar, 
are demonstrated clearly  in Figures 1,2 using blue and red 
crossed-hatchet areas.  In the global upper free- end torque M



expression as  illustrated in Figure 1a,  the radius of the bar is 
given by a;   ˆ ˆi  jr x y 

 is the polar coordinate of the variable 
point on the cross-section,  and z is the distance of the cross-
section from the bottom clamp  end of the bar. ˆ(  )r r zko  

  is 
the position vector of any point in the body of the bar, as well 
as on the sidewall surfaces of a circular cylindrical bar.  

These expressions include not only the surface tractions 
(forces and moments), but also the body forces denoted by

F


. For the torque calculations associated with the side-wall 
forces in a given cross-section, the bottom end is taken as the 
reference plane and its centroid as the origin. In the present 
case, we have no body forces because, as usual, gravitational, 
electrostatic, or magnetic ϐields are omitted following practice, 
but we have implicit forces and moments owing to rigidly 
holding the bottom end of the bar. These constraints can be 
easily evaluated by computing the other terms in the above 
equations explicitly and directly from known deformation 
tensor components. As we will show, the total force arising 
from the deformation tensor is zero, and the value of the total 
torque is independent of the choice of origin [12] means that 
we can take the centroid of each cross-section as an origin, and 
the position vector may be denoted by radial vector. Traction 

forces should be applied to the free C-end FEnd
 , FEnd

 , (Figure 1)

and the side walls FWall
 , FWall

 , (Figure 2) to balance the 
forces arising from the self- and anti-self-conjugate parts of 
the deformation dyadic, which can be calculated as follows: 

 ˆ ˆ ˆ ˆk. 1 / 2 j  i 1 / 2   0  F G dA G x y dA G k rdAEnd
           

   (4)

And

 ˆ ˆ ˆ ˆ. 1 / 2  j i 1 / 2    0 F G k dA G x y dA G k rdAEnd
           

    (5)        

The traction surface forces acting on the free end of the 
bar drop out because the ϐirst areal moment of a circular 
cross-section with respect to the center of gravity becomes 
zero because of symmetry. One obtains a zero contribution 
for the sidewall if one uses the self-conjugate part,
because  ̂ 0r    [11]. However, the shear-type traction force
density acting on the side walls along the tangent 
direction ˆˆ ˆ k  t r  of the circumferences is given by

    ˆ ˆˆ ˆ ˆ ˆ1 / 2 ( s ) 1 / 2  s ) (    )                 r r I r z k r zt . This is
owing to the anti-self-conjugate part of the deformation 
dyadic, and it is nonvanishing locally  ˆˆ ˆ z z 0    t k r , 
but its integrated sum becomes equal to zero because of the 
inversion symmetry: (Figure 2a,b).

  2 ˆˆ ˆ .  1 / 2      0  0 0
LF G r dS G r s a d dz a zdz t dWall

             


   
(6)

Therefore, the sum of the forces acting on the bar, whether 
they belong to the cross- sections or side walls, in the absence 
of body forces is identically equal to zero, which means that 
we can choose any point in the bar as an origin  as shown  in 
Figure 2a to calculate the torque terms [12].

We can choose the center of the constrained-bottom-end 
cross-section as a natural pivot point for the torque calculation, 
where the torsional displacements become zero. This choice 
is not completely arbitrary, but depends on the boundary 

Figure 1: Shows the vectorial geometric connections employed in the computation 
of the global force  = .(rƒ G k  


 and torque terms    .(dM G r k   

 
 associated 

with the self and anti-self-conjugate deformation tensors for circular cross-sections 
of cylindrical bar. Note: G shear modulus and it should be included in the force and 
torque formulas.

 

 

 

Figure 2: Shows the vectorial geometric connections employed in the computation 
of the global torque term      ˆ ˆz .  

 dM r kG z k dS associated with the force 
 ˆ. 


G rwf  due to the anti-self-conjugate deformation tensor for side-wall surfaces. 

Shear modulus G is included in the torque d


M  ((z) formula.
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conditions applied to the ends. If one chooses both ends to be 
free of surface traction forces and moments as counteracting 
sets, then one must choose the mid-plane of the bar or helical 
conformation as a natural reference system.  Using Figure 
1a,b the torque balance may be calculated in a similar manner 
in the absence of body forces as follows: Here, the position 
vector of the integration point is given with respect to the 
bottom clamp end of the bar (origin) (Figure 1a),  and may 
be denoted by k̂ ro zr  

  Then, the  contributions to the 

torque;    ˆ ˆ(  k)  k.M G r z dAEnd
    

 from the ϐirst  [ z k̂ ] and 

second terms  are  follows:

      3. dA 1/ 2 =1/ 6 = 0zk k G zk rt rdrd G z a rd         

   = . = 1/2 GM G r k dA r rt rdrdEnd       
  

3 4 ˆ1 / 2 / 4    


G k r drd G a k                    (7)

And

    3ˆ ˆ ˆ ˆ.Ö È rdrdè 1/ 6 ˆdA 1/ 2 Èz dè 0rzk k G zk rt G a      

   = . =1 /2EndM G r k dA G r rt rdrd     
  

3 3 4  ˆ ˆ1/ 2 / 4       r drd G r dr G aG k k                      (8)

The total torque acting on the free end of the bar is the sum 
of the above ϐindings: , 4= /2EndM G a k   . This ϐigure is exactly 
equal to the one was obtained by Landau and Lifshitz [5] for 
circular rod, and 4 /2Ga  was by then called as ``the torsional 
rigidity,’’ and where 4= /2J a  is the polar moment of inertia 
of the section when the section is circular [11]. Similarly, the 
same result can be deduced from the formula obtained for the 
elliptical cross-section by Timoshenko and Goodies and Fung 
[2,11],  3 3 2 2= ,tM G a b a b   using the stress function, which 
was ϐirst introduced by Prandtl [4].

These rigorously obtained results prove that the self- 
and anti-self- conjugate parts of the deformation tensors 
produce exactly the same torques for pure torsion applied 
to a circular bar, the summation of which is identical to 
that reported by Timoshenko and Goodier [4] and Landau 
and Lifshitz [5]. Including Saint-Venant [13,14], they all 
missed a very important contribution to the torque from 
the sidewall surfaces through the anti-self-conjugate part of 
the deformation tensor, which also reveals [Figure 2a,b] the 
importance of the nonvanishing shear force ϐield zt   acting 
on the sidewalls along the circumference tangent vector 
directions, t . This creates an extra-integrated torque term, 
which is directed along the z-axis and has a magnitude that 
depends quadratically on the distance L2 the cross-section 
away from the constrained bottom clamped end of the bar, as 
follows: [Figure 2a,b].

       ( )= . =G ,WallM z G r z k r dS r z k z t dS       
  

And

     ( ) = G ( ) G ,WallM z r z t ad dz z k z t ad dz       
                     (9)

i)   ,2 2 2 2

0
G dz = G

z
r z t a d a z k


     

ii)   23

0
G ( ) 1 / 3 0z k z t ad dz G az r d


        

  2 2 2 2 2

0
( )=2 = ( )=

z

Wall WallM z Ga k zdz G a z k M z G a L k          (10)

Where L denotes the full height of the bar along the 
z-axis. This expression clearly shows that a new torque term 
is produced because of the circumferential shear forces
 z t   acting on the cylindrical sidewall, which is directed 

parallel to the normal vector of the free-end surface of the 
bar, and the intensity of its action on the circumference of a 
given cross-section along the bar increases monotonically 
with the distance from the constrained bottom end of the 
bar. According to the statement made by Saint-Venant [1] 
and A. E. H. Love [15], which is also stated as `the principle 
of equivalence of statically equipollent systems of load’ by 
Young [16]. This should be balanced by the externally applied 
torque ( )WallM L  at the free end, in addition to the other torque 
terms ,

EndM   calculated above. The ratio of the torque terms 
2 2( ) / ( )=2 / 1Wall End EndM L M M L a     is much greater than that 

calculated by those who neglect the circumferential shear 
stresses acting on the sidewall of the cylindrical bar. This extra 
torque term should be applied to the free end of the bar to 
maintain torsional deformation of the static equilibrium state 
of the bar. The authors working on the same torsion problem 
from the beginning chose to work with the strain tensor using 
a cylindrical coordinate system, where the compatibility 
requirements were put into the proper format by Lamb and 
Clapeyron [17].

Torque in helical conformation

All our ϐindings, with the exception of the torque term 
associated with the side wall, can be immediately adapted 
for a simple helical bar with circular cross sections with the 
transformation of the three-pot vector set attached to the 
cross section of the bar   , ,i j k  to the circular cross section of 
the helical conformation, making use of its geometric identity, 
  , ,n b t . While we are doing this, we have a right-handed helix 

in our mind. Namely; k t   that is the replacement of the 
surface normal of bar with the tangent vector of the helix, 
which is now becomes the surface normal of the circular cross 
section of the helical bar that is assumed to be doesn’t show 
any warping. We can also deϐine the plane of the circular cross-
section of the helix as  =t n b , where b j   is the binormal, 
and   n i    is the principal normal vector of the helix, which 
forms the mid-meridian of the helical bar. The rate of change 
in the orientation of the binormal vector with respect to the 
arc length /db d n �  is called the torsion of the helix. where 
    is the torsion, which is an invariant quantity deϐined 
as =(1 / )sin cosR    for the simple helix. Here, β is the angle 
between the generator of the circular cylinder and the tangent 
vector of the helix and is assumed to be constant. Similarly, the 
curvature κ is deϐined as /dt d n � , which is the rate of change 
in the orientation of tangent vector t  with respect to the arc 
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length d; /d d  , where the   sign is arbitrarily assigned to 
the concave and convex surfaces. where dω is the inϐinitesimal 
angular difference between two successive tangent vectors 
along arc length d. This is also an invariant quantity for a 
simple circular helix and is given by 2=(1 / )sinR   [9].

It can be seen that the plane of the circular cross section of 
the helical conformation of the circular ring rotates around the 
surface normal, which is called the principal normal designated 
by vector .n  Target and binormal vectors vary concurrently 
along the curve because  =n b t  . After differentiating this 
vector connection, the following relationship is obtained:

     = = =dn d b t db t b dt b t d          . The projection of 
dn  over the binormal can be expressed as  =dn bb bd    
. The simultaneous actions of this inϐinitesimal projection 
vector in collaboration with the deϐinition of =db nd   on 
the   , andt n b  orthonormal axis set, respectively, results 
an inϐinitesimal clock wise rotation of the cross-section of 
helical conformation around the tangent vector t , which may 
designated by = t = /d d d d t   

  


  � . where the 


 vector 
also describes the rate of twist of the oscillatory plane per unit 
arc length, the magnitude of which is given by =Mod 


.

This presentation shows that for a helical conformation, 
one may take geometric torsion parameter λ of the simple 
helix as the ̀ `torsion ̀ `of the curve ̀ `denoted by  , and deϐined 
as the rate of rotation of the twist angle ϕ per unit length of the 
rod or ring. This means that two neighboring cross sections at 
distance d� will rotate through a relative angle d d    [so 
that /d d   ]. For helical conformations, this means that 
the inϐinitesimal relative orientation difference d


 of two 

successive cross sections, separated by the inϐinitesimal arc 
length denoted by d� may be designated by d td 

  �. where 
t  is the unit tangent vector of the helix, which is also the 
surface normal vector of the cross-sections of the twisted 
``circular ring sector’’ employed by Timoshenko and Goodier 
in their monumental work [4]. The following expression also 
rigorously proves that the vector product operation by 


 

on an arbitrary unit vector r  at the cross-section of the ring 
creates an inϐinitesimal displacement, which is perpendicular 
to the direction of the position vector in that plane, and the 
rotation is clockwise.

    cos sin = cos sinr td n b d b n           
    .               (11)

where r  is the unit vector in our formulation, and the 
parameter /d d �  is used extensively, which is designated 
by a parameter Ω in the literature, called the torsion angle 
by Landau and Lifshitz [5], which is misleading. Rather, it 
should be called the rate of variation of the torsion angle φ 
with respect to length  , which is perfectly correct. The total 
contributions from the screw and the self-conjugate parts of 
the deformation tensor, with the exception of the sidewalls, 
are oriented along the surface normal of the circular cross-
section designated by the tangent vector for the simple helical 
conformation, and it becomes.

  4= = / 2End End EndM M M G a t                          (12)

Figure 3 shows one way to decompose the tangent vector 
of helix t  is to take its projection over the directions of k  
and  k R  directions, such as   =  cos   sin  .t k k R   Where 
 = cos sinR i j    is the unit radius vector of the helix in the 

circular cross sections projected at the basal plane, which is 
opposite in direction compared to the unit principal normal 
of the helix,  n R  . In Figure 3   ,,R t kp  forms an orthonormal 
set of vectors, and the last two vectors deϐines a plane, which is 
tangent to the circular cylinder and holds the local generator 
as well as the tangent vector of the circular helix denoted by 
t . Here,   sink R   =  exp (- i θ) sinβ is the projection of the 
tangent vector of the helix over the tangent vector of the 
circular cross-section. 

This vector is deϐined by the local radial direction with a  
π/2 degrees shift in the anticlockwise direction and i 1.   
The ϐirst term constitutes the projection of the torque along 
the ϐixed k  direction, namely, the z-axis of the cylinder, and the 
second component may lie in the basal plane and is oriented 
perpendicular to the principal normal n R   of the helix. This 
clearly shows that the torque causes a precession motion 
following changes in the azimuthal angle θ along the helical 
backbone structure. Here, the apex angle is β = arcs ( t k ), and 
after that substitution, this expression in the torque equation

  M End
  , be written as the following set of relationships:

  4 4( )= 1 /2 =1 /2 cos sinEndM G a t G a k k R                         (13)

And

 4 4( ) =1/ 2 =1/ 2 cos sin . = 0M G a t G a k t k tp pEnd
           

Where 4C / 2G a  is called the `’torsional rigidity’ ‘ by 
Landau and Lifshitz [5] for a circular cross section with a 
moment of inertia denoted as 4= /2I a . Here, a is the radius 
of the circular ring model of the helix, which is about a few 

 
 

   

Figure 3: Decomposition of the side-wall torque of simple circular helix shown by 
red color line along the z-axis of the circular-cylindrical ring and the radial directions 
such as the principal normal n̂ ,  tangent of the local cross-section t̂ p  and ĵ , which is 
attached to the bottom clamp end of the ring.
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fractions of an Angstroms for the alpha -peptide [3]. This 
torque contribution also depends on the azimuthal angle 
variations along the helix owing to ( )R  , where the tangent 
vector describes a rotation around the z-axis with a constant 
apex angle denoted as β. where = 1i   is an imaginary unit 
number.   





&cos sin cos sin

= cos sin exp( )4( ) =1/ 2
= cos sin )

k j i

k iM G aEnd
k t p

   

     
 

 
 
 
 
 
 
 
 

 

  







         

(14)

Here,  ˆ ˆ coˆ sˆ sinR ik J     may be written in the complex 
space, which clearly shows the 90° anti-clockwise rotation 
of the R  clearly, namely,   = exp( ) =k R i t p   , where R

  
is the radial position vector in the cylindrical coordinate 
system {z , , }k R 


, and  ( . ) = 0k R ,  pt  is the unit tangent vector 

of the circular cross-section, and normal to the k  and R  unit 
vectors. The last expression above clearly shows that the 
radial component of the torque is directed along the tangent 
vector pt  of the circular cross-section of the circular cylinder 
having an azimuthal angle of ,

2r
  

 
 

   and its magnitude 
41/ 2M G a sinr      is constant along the helix.

The right-handed rectangular coordinate system (i.e., anti-
clockwise) is considered to attack the cross-section of the 
bottom end of the bar for the vector cross-product operations 
of {  , ,i j k }. The sidewall formulation of the helical bar involved 
reϐinement of the adaptation procedure. Expressions such 
as 

0

L
k zdz , which appear in the integration procedure of 

the sidewall torque, should be replaced by 0
Lt d  � . Then, 

the torque associated with the sidewall may be written as 
  2

0
=2WallM G a td   

�
� �� for the sidewalls of the circular cross-

sections of the helix. One may rewrite in terms of vectorial 
properties of helical conformation given in reference [9], such 
as the unit tangent vector t  in Cartesian coordinates using β 
inclination angle, which is constant, and the azimuthal angle 
θ, as follows: cos sin exp( )t k i     which clearly show the 
rotation and precession motions. The length of helix � and the 
azimuthal rotation angle θ are not independent variables and 
have the following relationship: R θ  sin β , Similarly, for the 
pitch height p = cos βwhere R is the radius of the helix.

   2 2= 2 1/ 2 cos sin exp( )0       
 M G a k d iWall
�� �

 2 2 2= 2 1/ 2 cos ( )0
       G a k R csec d exp i�               (15)

It is not obvious that the angular expression between 
brackets is a periodic function of 2, π even though the principal 
normal makes a full cycle when θ varies from zero to 2π. 
This is because the normalized amplitude of the precession 
motion, denoted by 2cscR    increases monotonically with 
an increase in the azimuthal angle towards the free end. It 
takes the following value: ( )WallM L , for the global moment 
balance, and L is the total length of the helical conformation. 
Here, we use the following transformation of variables while 
maintaining the geometric description of a simple helix:

csec csecR d R d      � . where the ϐirst relationship 
connects the arc length of the helix with the azimuth angle 
θ in the cylindrical coordinate system, which varies from 0 
to 2π for each full turn of the helical line around invariant 
axis k . This gives the full arc length of the helix for n turns 
as = 2 csechn R n� and the full pitch height for n turns as 
=2 ctannh R n . As (θ ) is a periodic function of 2π, it can be 

expressed as (θ ) = θRcsecβ. By substituting the decomposed 
form of the tangent vector of the helix into Eqs. (15), the 
following expression is obtained: Eq.(16) in terms of a three-
pot orthonormal set of unit vectors   , ,i j k  attached to the 
basal plane, before and after the integration procedure of 
the second term, we use the connections between the arc 
length and azimuthal angle for the helix obtained from the last 
expression for the torque term associated with the screw part 
of the deformation tensor.

   
   

2= cos sin exp( )0 0
2 2 2= 1/ 2 cos csec cos sin0

,    

      

   

 

  

 

M Ga k d d iWall

Ga k R j i d

� �� �� �         (16)



   

 
2 2 2

cos

&
( ) = csec 1/ 2 k ctan

sin
Wall

j j sin j

M Ga R
i cos i

  

    
  



     
      

   
  
    

 

       (17)

In Figure 4 the radial component R( / 2) ( )k MWall     
of the torque according to the formula given by the second 
term in Eq.(17), is plotted, which rotates around the z-axis 
of the helical conformation and draws a spiral path, while 
its azimuthal angle θ changes 0 T   continuously along 
the helix. The precession angle of the torque   may be 
obtained from the following expression. where one has; tan

= ( )/ . ( ).WallR k M  


2 21/22(cos 1 sin ) ( cos sin )= atan 2ctan
     

 
                   (18)

Figure 4: The radial component of the torque R(θ) according to the formula given 
by the second term in Eq. 17, rotates around the z-axis [ k̂ ] of helical conformation, 
and draws a spiral path while its azimuthal angle changing as 0 ≤ θ ≤ 6π continuously 
along the helix.
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 In Figure 5 the precession angle   between the torque and 
z-axis obtained from screw symmetric part of the deformation 
tensor is plotted with respect to the azimuthal angle (θ/2π) 
for the ϐirst four full cycle around the z-axis of the helix for two 
different tangent inclination angles β (or two different pitch 
heights: h1=2πR × 173, h2=2 R×0.325) namely β1=π/6 (red) 
and β2=72o (blue). This plot clearly shows that the precession 
angle of the torque initially starts with the inclination angle 
of the tangent of the helix with respect to the generators 
designated as β and then decreases continuously with the 
azimuthal angle θ.

Particularly during the ϐirst cycle, it shows a drastic 
decrease in the inclination angle, even though its projection 
on the basal plane increases almost linearly with some 
imposed periodic oscillations with a wavelength equal to 2π. 
At a multiple of 2π of the azimuthal angle, there are plateaus in 
the amplitude variations, which indicate that these are quasi-
nonequilibrium stationary states for precession motion. After 
a few more cycles, the direction of the torque asymptotically 
approached the orientation of the z-axis, regardless of its 
initial direction.

This off-diagonal part of the torque has such variations in 
the direction that it tries not only to suppress the pitch height of 
the initial few cycles, but also applies a large twist moment on 
the ϐirst ring to perform a 180o °rotation around the principal 
normal n . This effect increased as the initial inclination angle β 
increased (small pitch height). The oscillatory behavior of the 
amplitude variations can be seen clearly in Figure 6. (aqua), 
where the inclination angle of the torque and magnitude of the 
basal component are plotted using Eq. (16) with respect to the 
azimuthal angles by considering β= 30°(red) and 72o, (blue), 

respectively. These are also invariant angles between the 
tangent vector and generators of the helix. Close inspection of 
the amplitude plot shows oscillations with a periodicity equal 
to 2π.

During the ϐirst cycle of precession motion of the torque, 
as described by Eq. (17), exerts a torsion moment over the 
oscillation plane through its off-diagonal component oriented 
along the principal normal of the helix, forcing it to rotate 
clockwise. This is an interesting ϐinding that clearly shows the 
importance of the constrained end in stabilizing the torque. 
This could be used as a mimic in practice by placing rather 
heavy and/or highly rigid molecular cis-isomer constituents 
at the end of the steroid skeleton six-ring [18] chain to 
increase its local torsional moment on the A-ring side because 
of its additive character in the alignment with two other 
components of torque deduced directly from the self- and 
anti-self-conjugate part of the deformation tensor.

In Figure 6 the normalized projected torque oriented along 
the surface normal of the circular cross-sections using Eq. 
17 are plotted, where 2Ga is employed as a normalization 
factor that arises from the sidewall shear stress ϐields of 
helical conformations. Variations in the apex angles were 
also plotted to demonstrate their behavior. Two different β 
apex angles were selected namely; 72o (blue) and 30o (red). 
An increase in the beta angle or pitch angle does not change 
the upper limit of the critical range, which is approximately 
120o but enhances its effect by increasing the intensity of the 
temporal –twist moment on the oscillatory plane of the ϐirst 
ring and moves in both directions by applying the same right-
hand twisting.

For a helical bar, the expression in Eq.17 can be also 
written in terms of the arc length instead of, θ which is also a 
function of the arc length:

   2 2= 2 1/ 2 cos sin ( )0M G a k d exp iWall         �� � ��

   2 2 2= 2 1/ 2 cos ( )( cos sin )0G a k R csec d j i         ��

   2 2= k cos 2 csec csec( )M G a R n R t j RPWall      
     � � �    (19)

As illustrated in Figure 6 ,    = = sin cost k R i jp       is 
the unit vector, which is the tangent of the circular cross-
section of the helix and designates not only the direction of the 
precession motion of the torque term but also its amplitude 
dependence on β.  =n R  is the principal normal vector of the 
helix, which is directed towards the axis of the cylinder and is 
perpendicular to both tangents { ,pt t  } and binomial, denoted 
by  = tb n   . The ϐirst term in the above equation shows that 
the torque causes not only a simple rotation about the z-axis 
but also that its amplitude along the z-axis grows steadily 
with the quadratic function of length, while its precession 
amplitude increases linearly with the azimuthal angle. The 
latter motion follows a spiral path, as illustrated in Figure 4. 
where the genuine torsion associated with the helix is deϐined 

Figure 5: Cyclic precession motion of the torque ϕ is presented with respect 
to the azimuthal angle of helix as calculated from Eq. 18 (red and blue lines). The 
torque asymptotically adjusting itself parallel to the z-axis of helix, while apex angle 
decreasing to zero asymptotically. The precession amplitude also shows a periodic 
oscillation with an interval of 2π.
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as  / ndb d  . Here, λ measures the arc length rate of turning 
of the binormal unit vector b , similar to curvature , which is 
also a scalar quantity that measures the arc rate of the turning 
tangent vector t . 

The torsional torque of a bar with a circular cross section 
is an invariant quantity because the rate of torsion per unit 
length is constant along the bar. This means that it does not 
change from one end to another. However, the torsional 
displacement measured by the cumulative twist angle varies 
linearly along the bar, which is given by  = =T   . One may 
write the following relationship, that can be obtained from 
Eqs. (7, 8) for the rate of change in the torsional torque of the 
helix by replacing the k  vector with the tangent vector t  of 
the helix, where t  varies with the arc length or azimuth angle 
 :



  



1 14 4( ) = ( )
2 2

& cos sin
&1 4=

2 &=k cos sin
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k k R

G a
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 (20)

Where the ϐirst term stays constant having directed along 
the z-axis of the helix, but the second term which makes 
rotation around the cylinder axis k  by sweeping a perfect 
cycle having a radius equal to sinβ as can be seen from the 
explicit expression:   = = sin cost k n i jp        dictates 
direction of the rotation of the principal normal denoted by 
 =n R  around the z-axis.

Pure bending adapted for circular helix

The pure bending and twisting of a circular ring sector have 
been extensively treated by Göhner [19] in various studies 

using the classical theory of elasticity. Later, his unabridged 
results were carried by others into their books, namely by 
Timoshenko and Goodies [2], who communicated with him by 
letters. Göhner approach to the problem of pure torsion as well 
as to the bending was to ϐind a set of successive approximation 
for the stress functions, which were supposed to be satisfying 
not only Airy differential equation in 2D space deduced from 
the axially symmetrical stress distribution problems, [20] but 
also the compatibility requirements. Original set of equations 
were given in the cylindrical coordinate system, which were 
obtained by Lame’ and Clapeyron [17] (1831) using the force 
equilibrium equation =0F  


, in the absence of the body 

force  =  0F


. Where, Ω is the stress dyadic, which is assumed 
self-conjugate tensor, and then the strain tensor counterpart 
supposed to satisfy the compatibility connection given by ∇ × 
Φ × ∇=0. Therefore, from the beginning of his attempt to solve 
this problem by successive approximations, he completely 
lost the critical component of the torque originating from the 
non-vanishing circumference shear force ϐield at the sidewalls, 
which was assumed to be zero or negligibly small to affect the 
results of the solution as a part of the boundary conditions. 
In fact, in the absence of the anti-self-conjugate part of the 
deformation, he would not have any change to discover the 
existence of the unusual term critical component. In fact, it 
is dangerous to start solving the elastic problems from the 
opposite direction, namely, setting a boundary value problem 
to ϐind the stress and strain distribution functions relying on 
the ill-deϐined fact that the strain function would be unique if 
they satisfy the compatibility set. However, this satisfaction 
does not guarantee that anti self-conjugate part vanishes. 
Owing to the rotational character of the anti-self- conjugate 
dyadic (its divergence vanishes), it satisϐies compatibility 
[10,11].

 1= 1/ 2 ( ) = 2 ( ) =
1 2 12 ( ) = 2 3 = 3 / 2 0.

        
        

s I s s

s s
   (21)

Göhner argued that if two equal and opposite couples’ M 
are applied at the ends of a circular ring center in the plane of 
the center line of the ring, they produce strain symmetrically 
with respect to the z-axis, and the shearing stresses r  and 
z  in the meridional cross-sections of the ring are zero. The 

remaining four stress components,  , , ,r z rz    must satisfy 
the equations of equilibrium for the case of symmetrical 
strain. The ϐirst approximation yields a solution, where all 
those three components  , , 0r z rz    , out of four become 
zero with the exception of the uniaxial stress acting along 
longitudinal direction of the circular ring, as we denoted by 
unit vector t ; = cEx t 

  , where 4=4 /bc M a E , E is the Young 
modulus of elasticity, and a is the radius of the circular cross 
section, X is distance of the point from the center, 4= /4cmI a  
is the second moment of inertia with respect to the center of 
mass system (c. m.). Where by deϐinition c is the rate of change 
in the orientation of tangent vector t


 with respect arc length, 

= /c d d � . This is the deϐinition of curvature, which may be 
designated as 2= 1 / sinR   for a simple helix. Then one writes

Figure 6: The apex angles β and precession amplitudes of torque are plotted for two 
different apex angles β = 30o (red) and 72o (blue). The projections of torque along the 
z-axis are given by red and blue dash-dots-lines, respectively. These show that the 
amplitude for the small angle grows much faster than the large one. The precession 
amplitude oscillations show periodic temporal stationary states at the integer n 
multiple values of 2π.
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4 1 2= 1 /4 sinbM a E R EI    . Similarly, the Helmholtz free 
energy for a pure bending deformation, m.

The node of a simple helical conformation can be written as
2 4 2 4= 1 /2 =1 /2 =1 /2 ( /4) sinB bF M EI E a R     (erg/cm). A close

inspection of beam vibration theory [11] shows that the 
SED for small deϐlections involves the term  22 2/y x  in the 
integrand of  22 2

0
= /U EI y x dx 

� , which is the square of the 
curvature of the 2D curve as a ϐirst-order approximation 
of  3/2'' '2= || 1y y  . In fact, one can calculate the torque 
associated with the stress distribution by =

a

a
M rdA 






 
, and 

then write.
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(22)

In the last expression, we employed the complex notation 
for the rotation operation, where j  axis is replaced by the 
imaginary axis denoted by = 1i . The expression in Eq. 
22 shows that the direction of the torque designated by j  
corresponds b , which can be deduced from the following 
connection for the right-handed helix:   = =J t i t n b        . 
The second and third lines in Eq.22 shows that the bending 
torque causes a rotation around the z-axis of the helix with 
an apex angle given by =atancotan =( /2 )    , which is 90o 
off the initial precession motion of the torque associated with 
the screw symmetric deformation tensor, as well as from the 
torsional torque terms acting on the free end.

Mechanical stability of helical conformations α-peptide 

In the ϐirst part of this section, the electromechanical 
stability of the strained helical conϐirmations is treated 
under isothermal isochoric and isobaric conditions. A special 
reference for the application of this theory to the α-peptide 
structure of amino acid complexes is provided by employing 
two different irreversible thermodynamics methods 
according to the imposed constraints on the free variables to 
obtain a simple and manageable mathematical model. In our 
subsequent papers [21,22] on the spontaneous unfolding of 
helical conformations, we introduce a more general relaxation 
approach using the Lagrangian multiplier method to solve the 
extremum problem. While dealing with the electromechanical 
stability of this highly complex and discrete atomic skeleton 
of peptides, we are still insisting on remaining in the domain 
of the continuum approach. The most important outcome of 
the present naïve thermodynamic approach to the stability 
problem is the unique role of the interfacial Helmholtz free 
energy of the boundary layers enclosing and separating the 
peptide skeleton from its immediate internal and external 
aqueous solution environments, which may be characterized 
by a single electrochemical quantity, that is, the pH level 
[3]. As far as the critical or non-equilibrium stationary 
stable arc length of the alpha-helical conformation is 

concerned, for isochoric isothermal systems, there is only one 
physicochemical parameter that plays a major role, which is 
the ratio of the surface (interface) Helmholtz free energy and 
the shear modulus of elasticity, namely, fs / G.

The precession apex angle of the torsional torque obtained 
from the skew part of the deformation tensor is initially 
equal to the inclination angle of the tangent of the helix but 
then continuously decreases with the azimuthal angle. The 
recession component of the unusual torque term, which 
is oriented parallel but opposite direction to the principal 
normal of the helix in the basal plane, it is the only component 
of the among the torsional torque terms may allow the 
incoming `A’ ring to rotate around the principal normal of 
the helix to match the oscillation plane of the `B’ unit for the 
easy formation of cis-fusion bonding. The strength of this 
component was minimal at the N-terminus of the ϐirst amino 
acid residue and then increased gradually. The strength of this 
component according to Eq. 17. and Figure 7. depend on csec 
β, implying that a smaller apex angle β is the intensity of the 
torque term.

The apex angle during the ϐirst cycle shows a factor of two 
reductions, which indicates that the effects of the constraint 
at the clamp end (N-terminal) of the helix are important for 
stabilizing the entire system. In addition to the torsional 
torques, the bending torque exists, which is aligned along the 
binormal axis of the helix, and has the capacity to turn not only 
the circular cross section but also the oscillatory plane, and 
then force the B ring to match the coming A ring to form a 
cis-fusion.

This point may be used as a mimic by placing heavy weight 
or stiff molecular side attachments similar to the N-edge to 
stabilize the initial steroid skeleton group, which also helps 
the incoming A ring to have the required 180o twisting to 
form cis-fusion with the B ring, as shown in Figure 7a. This 
twisting can be achieved by the temporal torsional torque 
spiraling around the z-axis of the helical conformation, which 
is represented by the second term in Eq. (17), which is as 
follows:

  , 2= 2 csec csecPM G a R n R t j RPWall       �

   , 2 2( )= 2 .RadM G a R csec n J tPWall                         (23)

a) b)

Figure 7: A typical Cis-Trans and Trans fusion sequence is demonstrated for β- 
Steroid skeleton structure. One needs 180o rotations of A-ring to be attached to the 
B-ring in order to form Cis-fusion bond. This is a very large twisting, which can only 
take place in nature either by the presence of highly localized thermal ϐluctuations or 
during the growth stage of the individual blocks.
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This torque acts in a direction opposite to the principal 
normal n , and forces the twist of the oscillation plane in the 
anti-clockwise direction for the right-handed helix. At the 
free end of helical conformations, where the torque terms 
arising from the torsion as well as from the bending should be 
balanced by the applied surface tractions and moments for the 
mechanical stability of the structure. However, in biochemical 
systems, such as folded peptides, it does not appear that their 
free edges sometimes experience any external moments by 
external agents for mechanical stability explicitly. It has been 
claimed that this task is accomplished at the C-ends of helical 
peptides by non-vanishing electrostatic counteracting forces. 
We show that this task can be accomplished spontaneously 
either by adjusting the surface Helmholtz free energy or by 
the presence of an excess pair of anti-align dipoles in the 
system under isochoric isothermal conditions.

It is also possible that without those edges being explode 
to external moments, the whole system might still be balanced 
mechanically either through the side-branching of residues, 
which connect the inner faces of the walls of the helical 
skeleton, or the whole system is in a viscoelastic state from 
the beginning and has very long relaxation times. In any 
case, the stored Helmholtz bulk free energy due to torsional 
deformation is given by the following expression, assuming 
that the system is isochoric and that all conceivable processes 
are isothermal:

   

: =
2 281= = 2 2 22 2
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 2 4 2 3= 2 4 /3 ( rg/ e )G a a   �                   (24)

It should be noted that only the minor 
0 2

2 0
 

  
z
z  in the 

skew part of the deformation tensor contribute to the 
stored Helmholtz free energy in the bulk, which is given by 

 1 2 2 2 2 38 { 4 /3}
2

G dV z G a   � . The other off-diagonal terms 

in the deformation tensor after the double inner product 
operation may be summed as  2 2 2 2 22 =2x y r   , which 
involves the moment of inertia with respect to c.m. and the 
ϐirst term in Eq. (24). This may be neglected because it is a 
few orders of magnitude smaller than the contribution of the 
second term to torsional energy in a nanoscale environment.

Irreversible thermokinetics of helical conformation

Global Helmholtz free energy also involves a surface 
Helmholtz free energy that may be given by for the circular 
cross section helical form: 2( ) = 2  TF a f d afS S S   � �� . Where 
fs is the speciϐic Helmholtz surface free energy, which should 
be replaced by the interfacial energy if the system in the 
interactive environments such as the aqua electrolytic 
solutions. In general, this quantity is positive in the absence 
of electrostatic and magnetic ϐields. However, in the case of 

deformed solids under isochoric conditions, the whole body 
is in a non-equilibrium state because of the existence of the 
stored residual elastic strain energy density in the bulk region 
as well as at the surface layer. The contribution of the surface 
or interfacial Helmholtz free energy to the global Helmholtz 
free energy appears to be a negative quantity that assists 
stability or avoids unfolding or fragmentation. This is due to 
the fact that any enlargement of the surface area regardless 
of its cause while keeping the volume invariant, produces 
substantial decrease in the elastic stored free energy [6-8] 
(strain recovery process) of the body under the isochoric 
and isothermal conditions. This in turn causes a decrease 
in the global Helmholtz free energy of the system, which 
means that it is a spontaneous natural change that pushes 
the system towards a non-equilibrium stationary state [6]. 
That hypothesis may be also justiϐied by the Planck (1887) 
criterion [23] for isochoric isothermal changes for the closed 
system, which may be then connected to the Prigogine’s 
positive deϐinite internal entropy production hypothesis as 
a special case: 1= T 0 V=0In GS F       , where equal sign for 
reversible (equilibrium) processes, and positive sign for the 
irreversible or natural processes. Namely:

     = 0F F FBG S        

And

       ( ) 0F F V F F VB Chem Mech Chem        
 
(25)

Which may be put into the following format for the 
present case, where the ϐirst term represents the bulk term 
that involves not only the chemical part ( )ChemF V but also the 
elastic stored deformation energy  FMech   due to torque 
terms associated with pure torsion and bending. Because there 
are no composition or volumetric variations for the present 
stability problem, the bulk term involves only mechanically 
stored energy. The second term is the change in the surface 
Helmholtz free energy due to the change in the surface area of 
the helical conformations:

z
/ 1/ / 0, S t T F tInt G      

 2/ / 3  ,t kT A B     
                

(26)

The global Helmholtz free energy 
 ( 3)= TF F F A BEG S      � � optimization with respect to 

the length displacements yields the following relationships:
* 1/2= ( / 3 ) cmB A� , and where * 1/2= 2/3 B( /3 ) erg/cmGF B A  , 

which corresponds to, respectively, the critical length and the 
binding Helmholtz free energy of the helical conformation at 
the absolute stable state. The system parameters used in the 
above connections are A= 2 24 /3G a   (dyne/cm2) and B = 2 Saf  
(erg/cm). By using the following fundamental relationship, 
which is valid for the isochoric isothermal changes in closed 
systems: / = 1 / /G

Int GS t T F t       between the rates of internal 
entropy production and the global Helmholtz free energy 
changes, respectively, one may obtain a very useful thermo-
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kinetics expression: [24]  2/ = 1/ 3 0GS t T A B tInt      � ��
. The connection between the rate change in the Global 
Helmholtz free energy and internal entropy production 
was further elaborated by Ogurtani [23] for the irreversible 
thermodynamic formulation of quantum dot evolution kinetics 
in strained solid thin ϐilms under isochoric conditions. This 
expression may be decomposed according to Onsager’s receipt, 
even though it would not be unique, into conjugate ϐluxes and 
forces to obtain a kinematic rate equation for the stability of 
the length of the helical conformation:  2// = 3d dt kT A B  � ,
and by substituting the system parameter in their proper 
places,   2 2 2 *2= / 4 2/d dt kT G a     �� . This kinetic 
equation may be integrated under two different initial 
conditions, namely, above and below the stationary state 
conϐiguration, that is, * R    and *  L    . The analytical 
results of the integration are given for the following two 
domains [25]:
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And

     
* *

2 2 * *exp 2 / 4   * *
L kT G a t
L

   
  

 
   

 

   
  

   


          
(28)

Inspection of the above set of equations shows that in 
both cases, the length of the helical conformation approaches 
asymptotically to the critical length, from top and bottom, 
respectively; * *and       R Lt � �  . Using the above set of 
mathematical connections in Figure 8. two plots are produced 
that describe how the irreversible processes associated with 
these two non-equilibrium initial conϐigurations of interest 
proceed asymptotically.

The third line in Eq. (26) designates Onsager’s relationship 
between ϐluxes and conjugated forces. Where μ/kT  looks very 
similar to the Einstein mobility, and this connection shows 
that when the length of helical conformation is less than the 
critical length (slope of Global Helmholtz free energy (GHFE) 
plot becomes negative) and then the natural isothermal 
process takes place, and the length starts to increase towards 
the minima in GHFE curve, which is nothing but the non-
equilibrium stationary state according to the deϐinition of 
Prigogine [26,27].

If there is some overshooting due to large ϐluctuations, then 
the opposite process takes over, which attempts to reduce 
the length of the helix until it reaches the critical length. This 
shows that this system, from the classical thermodynamics 
point of view, has an absolute stable state, as designated by the 
minima in the Global Helmholtz free energy plot. To illustrate 
the behavior of the isochoric system, we chose the following 
system tentative parameters: =15sf B  and A=15 to obtain 
real numbers for the graphical solutions shown in Figure 9a.

This again shows the stability of the peptide helical 
conformation even when β is very close to 82o which means 

that the usual bending torque becomes very close to the 
maximum while the usual torsional torque term approaches 
zero; however, the main stability comes from the unusual 
torsional torque term formulated rigorously in this study, as 
demonstrated in Figure 9ab.

For isobaric Figure 9b and isothermal system, we have the 
following expression for the Global variation of the Gibbs Free 
energy with respect to arc length of a helical conformation: 

 3 2= = 3 0G A B G A BG G          � � � , where A=15 and 
=15sg B  is selected to produce the graphical solution of 

the problem, which is presented in Figure 9b. The following 
connections were obtained for the critical length *  of the 
helical nucleus and the activation energy barrier *

GG  for the 
growth of the helix under constant traction (torques) and 
bending moments.

1/2 * 1/2= ( / 3 ) and = 2/3 B( / 3 )* B A G B AG � .

 3 2= = 3 0G A B G A BG G           � � �

/ = 1 / / 0,Int GS t T G t      Positive Internal Entropy 
Production (29)

Figure 8: The asymptotic approaches from the left L = 7 and right R = 1 sides towards 
the stationary state conϐiguration are illustrated by using scaled time t/τ and positions 
*  = 5 in connection with Eqs. (27,28) 25 . Where the inverse relaxation time is given 
by:  1 * 2 22 / 4kT G a     

 

 
Figure 9: For the illustration the Global Helmholtz (red) and Gibbs (red) free energies 
for the isochoric Figure 9a and isobaric Figure 9b of helical conformation, the ϐictitious 
values of negative and positive surface free energies are employed, respectively. A 
= 15 and B= ±15. The calculated critical nucleation arc lengths and the extremum 
values of the Helmholtz and Gibbs free energy barriers are, respectively, found to be 

 = .(rƒ G k  


 *
 = 0.59,0.56 and * *5.769  5.772.     F and GG G
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 / ,/ 2= 3t kT A B       

The fourth equation in the above set was obtained 
by using the spilling technique of the internal entropy 
production inequality into conjugate forces and ϐluxes. 
Although this procedure is not unique, it satisϐies the invariant 
transformation properties of conjugate forces and ϐluxes, as 
mentioned by De Groot [25]. The dynamic equation indicates 
that the direction of the change in the length / 0t   of the 
helical conformation is towards small sizes when the slope 
of the global Gibbs free energy (GGFE) curve is positive; 
otherwise, it is directed towards the growth domain, which is 
on the right side of the GGFE peak.

Where one could also introduce the contribution due to the 
Helmholtz free energy due to the pure bending associated with 
the helix, which is calculated in the previous section; namely: 

 2 41/ 2 =1/ 2 /( ) 4BF M E aM b     � , where  is the arc length 

of Helical conformation. Then the total bulk Helmholtz free 
energy associated with a helical conformation having circular 
cross section may be expressible by the following formula 
using our ϐindings in this paper: Where, we have the following 
deϐinitions for the system parameters designated above; 

2 2=(4 /3)A G a  and   2 2 4= 2 /2 2 2S SB af G E a af       .

Then one has;

  4 23( ) ( ) 42 2 21/ 2 2
4 3
a aB TF F E G GMech Mech

   
             

     � �   (30)

In the footnote calculationsa, which are given in , the 
shear modulus [28] is assumed to be G=1.0x1010 dyne/cm2 
(1GPa), which is estimated from the well-known relationships 
{ 2=E v , and G=E /2(1 ) }, where the mean values of the 
ultrasonic longitudinal propagation velocity, volumetric 
density, and Poisson’s ratio, respectively, are given by v = 1.5 x 
105 cm/sec., ρ = 0.92 gm/cm3, and v = 0.4 from measurements 
of L-alanine amino acid residues performed by Kumar [2] 
in an alcohol-water co-solvent at room temperature. The 
surface Helmholtz free energy is assumed to be approximately 
fs = 800 erg/cm2 by observing the close connection between 
the unfolding total energy of the α-helix (L = 10 nm) and the 
pH (3-8) level of the water-alcohol solution data obtained 
experimentally by Idiris, et al. [3] (Ref-20, Figures 5,6.). The 
unfolding energy is reported to be approximately 20 eV/
molecule or 2000 kJ/mole for the fully stretched conformation 
of (Glu)n -Cys at a pH of 8 at room temperature, assuming 

that the length is 10 nm. This experimentally obtained energy 
ϐigure is one order of magnitude larger than the average 
effective energy of hydrogen bonds, = 45Kcal/moleE   (1.95 
eV/molecule) for alpha-helix submerged in water, in the 
absence of π-helical hydrogen bonds, as reported by Hiltpold, 
et al. [29], which relies on extensive molecular dynamics 
studies. Here, the unusual torque terms, which is found to be 

Mech= 7.71 eV/moleculeTF  , where the critical arc length appears 
to be 98.7 A, while the binding Helmholtz free energy becomes 
-15.5 eV/moleculeb.

The best matching positions of the calculated stored elastic 
energy and global Helmholtz free energy values are marked 
by the blue solid circle and red diamond tip, respectively, on 
the free energy plots in Figure 10. the stability of the helical 
conformation can be explained quantitatively if one takes 
the surface Helmholtz free energy term [30] as fs=800 erg/
cm2, and the shear modulus G = 1GPa in this study. Those 
quantities produce the following numerics at the non-
equilibrium stationary state; namely: the surface free energy 
as = 23.25 eV/moleculeSF  , which is factor of two greater 
than the contribution coming from the stored elastic energy 
of 7.71 eV/mol due to unusual torque term in the global 
Helmholtz free energy. These large energy values come 
from the selected high G and fs values, but in reality, their 
experimental observations are closely related to the very ow 
pH 3-4 levels of the test environment and their drastic effects 
on the interfacial free energy through polar and/or nonpolar 
hydrophobic interactions [3].

a
If one uses, fs=800 erg/cm2 , G=1.0×1010 dyne/cm2, λ= 2.34×106 cm-1, and 

2a=1.5 A, then one obtains: A=1.29×107 erg/cm, and B=3.77×10-5 erg/cm. 
Then, one ϔinds a critical length of * ≅ 98.7A from * = (B/3A)1/2, and the 
critical Helmholtz binding free energy = -2.48x10-11erg (-15.5 eV) for the non-
equilibrium stationary state from=-2/3B (B/3A)1/2. This amounts to 1.409 eV 
per amino-acid residue, which should be shared by its four main constituent 
atomic species {N, Cα, C, O} that results - 8.139 Kcal/mole (0.352 eV/atom) for 
the helical α-peptide (3.611 conformation , which is in excellent agreement with 
Ackbarow[36]. Who obtained, respectively, 11.1(9.9) and 4.87(3.08) Kcal/mole 
from the slow and fast dynamic tests.  One order of magnitude decreases in G 
value while keeping the fs/G ratio invariant results a factor of ten reductions in 
all energetic values without changing the critical length. 
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Figure 10: For the illustration, the Global Helmholtz Free energy (red) and the Stored 
Elastic energy (blue) due to unusual torque tem for the isochoric helical conformation. 
The calculated critical arc length and the binding Helmholtz free.

bReported values of the pitch high and diameter of α-helix are, respectively, 5.4A 
and 2R=12A in the literature. [29] Those may be used to calculate the inclination 
angle as β=81.84o, and the total length of helix 116A, and the arc length of a 
single ring as 38.06 A, respectively. The diameter of a residue is given by 2a=1.5 
A. These data give us Torsion parameter as equal to λ=1/2R× sin (2β)≈ 2.34× 106 
cm-1. Amino acid residue length is 10.55A, and the mean distance between {C’ 
and C’} or equally well {N by N} species is about 3.5 A. energy are, respectively, 
found to be * ≅ 98.7A and * 15.5 /  GF eV molecule  Blue solid circle and 
red diamond tip marks on the above energy proϔiles are calculated using the 
hypothetical data: fs=800 erg/cm2and G=1GPa.
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We have also tried to consider an extra term associated 
with the permanent electric dipole-dipole interactions, which 
prevail in most peptide conformations and are claimed to be 
the main structural stability agents without producing any 
substantial proof in the literature [28]. The dipole-dipole term 
is an intrinsic term, which should appear as an additive term 
in all characteristic functions, such as thermodynamic energy, 
enthalpy Helmholtz, and Gibbs free energies, but with sign 
reversal in the case of Enthalpy and Gibbs free energy [31], 
then one writes.

 3 2= = 3 0

* 1/2 * 1/2= ( ) / 3 ; = 2/3 (B C)( ) / 3

         

    

F A B C F A B CG G

B C A F B C AG

� � � � �

�
(Extremum)(31)

 3 2= = 3 0

* 1/2 * 1/2= ( ) / 3 ; = 2/3 (B C)( ) / 3

G A B C G A B CG G

B C A G B C AG

           

    

� � � � � �
    (Extremum)(32)

By considering C=5 (the proper ± signs are introduced in 
Eqs (31,32) for isochoric and isobaric systems, we obtained 
the following mappings: In particular, the isochoric solution 
produced very interesting results that showed stabilization of 
the helical conformation at the ϐinite critical length.

 This is a very important result to explain the strange 
behavior of peptides in practice, such as folding and unfolding, 
multiplications, or partition after having some critical size into 
two halves. Here, we demonstrate that the enhancement in 
the stability may be achieved by the D*D interaction because it 
produces an effect that implicitly reduces the surface speciϐic 
free energies in both cases, namely, for the isochoric and 
isobaric isothermal changes, as shown in Figure 11a,b.

The potential energy of the dipole- dipole interaction 
between two permanent electrostatic dipole vectors 
separated from each other by r


 may be given by the following 

expression, where only the second term is used because of the 
on-plane positions of the residues =0d r

 
.

'.' '1 3 1= . .' 5 3 3
d dV d d d rr Id

rd d r rr
 
 
 

      


    

              
(33)

And
.1 2= 3cos cos cos' 1 2 124 12

d d
V

rd d o
  


 

 
                  (34)

We may also employ the angular equation given above to 
account for misaligned dipoles. Where θ12 is the angle between 
the two oppositely charged dipoles and r12 is the distance 
between is the distance between the two molecules. θ1 and 
θ2 are the angles formed by the two dipoles with respect to 
the line connecting their centers. Aligned pairs with positive 
and anti-aligned pairs have negative potential energies. It 
is also important to determine the potential energy of the 
dipole moments of more than two interacting molecules. An 
important concept to keep in mind when dealing with multiple 
charged molecules interacting is that like charges repel and 
opposite charges attract each other. Therefore, for a system 
in which three charged molecules (two positively charged 
molecules and one negatively charged molecule) interact, 
the angle between the attractive and repellant forces must be 
considered.

In the present special case presented in Figure 12a,b. 
systematically, the mutual conϐigurations of these pairs in 
the peptide blocks are such that their interaction may be 
represented by the last term in the above formula, because 
in most cases, dipole moments occur in pair-wise acting on 
the same oscillatory planes [32], either parallel or anti-parallel 
orientations.

These pairing arrangements automatically eliminate 
the ϐirst term and result in either negative or positive 

ϐinite contributions, and 2

3

( )
1( ) = ( )d dE d
r




  
 

   
 
 


 to the global 

Helmholtz and Gibbs free energies of the system, respectively. 
Where ( )   and ( )   are the volumetric dipole densities 
[#/cm3] of the parallel and antiparallel dipole pairs in the 
helical conformation, respectively. Here, we do not agree with 
the argument of HoI [33] that three is the total cancelation of 
dipoles owing to the aggregate effect, except for the N- and 
C-termini, which have opposite electrostatic charges. HoI 
continues to argue that since the axis shift or pitch for each 
amino acid residue in the α-helix is 1.5 A, all dipoles cancel out 
except for the C- and N-termini. This argument, which may not 
be justiϐied even for the stationary state conϐiguration, when it 

  

  
 
 

Figure 11: Stabilization of the helical conformation by the anti-align ↑↓ dipole-
dipole interactions for the isochoric and isobaric systems is presented by using the 
following ϐictitious values: C = 5 (red -line) with d-d and C = 0 (red- dots) without d-d 
interactions, A = 15 and B = 15. Both systems show enhancements in their stabilization 
by lowering the minima in Isochoric system, Figure 11a and elevating the activation 
free energy barrier in the case of Isobaric systems, Figure 11b, and meanwhile the 
critical lengths show slight increase in both cases.

a) b)

a) b)

Figure 12: Electric Dipole distributions in amino acid blocks with anti-align and   
without align dipole pairs in Figure 12a. Where, there is only one strong anti-align 
pair out form by {C’-O and C’-O} in addition to the two align off-set pairs. In Figure12b, 
there is one align-pair, which is not assigned properly [33].
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comes to the transition stage, would be completely collapsed, 
since the α-helix starts to relax towards unfolding because it is 
only a spontaneous decrease in the speciϐic surface Helmholtz 
free energy density that can be achieved for the isochoric 
system. This change in the speciϐic surface energy arises from 
the short-range electrostatic interaction between the highly 
monopolar surface characteristic of the amino acid backbone 
structure and its immediate hydrophobic environment, 
which helps reduce the interfacial surface free energy. This 
means that variations in the pH level of the aqueous solution, 
which is capping the alpha helix, may trigger pitch extension 
because of the back stresses originating from the stored 
torsional work injected during the folding stage. That pitch 
enhancement is accompanied by the simultaneous increase 
in the height of cylindrical cage of the helical conformation to 
reduce the residual torsional deformation characterized by 
λ⟾0. Eventually, the result is complete unfolding toward the 
zero-inclination angle β or torsion λ=1/R sin β cosβ, as has 
been observed recently in our simulation studies.

In practice, we have enough information about their 
arrangements and densities in particular peptide building 
blocks that we can make reasonable estimate about the 
excess density of the majority dipole pairs   and their 
parity conϐigurations, and use them in the calculation of the 
interaction potential; where `a’ is the radius of helical circular 
conformation; namely:  

2 3 2= / 4E d r a Cod d    


  � . 
The negative and positive signs correspond to the anti-align 
and on-align pairs, respectively. There is a sign reversal in the 
C parameter when it is added to the Gibbs free energy, but 
not for the isochoric system. Therefore, we prefer to have an 
excess number of anti-align pairs, which go with a negative 
sign to Helmholtz free energy assists the surface free energy 
in stabilizing the structure for isothermal isochoric growth.

The calculations presented in the footnoteC show that if 
one takes the shear modulus as G=109 dyne/cm, then two 
anti-align dipole pairs would be sufϐicient to stabilize the 
whole α-helix conformation with a critical binding energy of 
approximately 4 kcal/mol per amino acid residue, which is a 
factor of four higher than the measured unfolding energy of 
11.1 (9.11) kcal/mol by Ackbarow, et al. [34] from the slow 

deformation test (SDT) performed on HB bonds in the α-helix. 
The Bell model [35] was used to analyze the dynamic force 
extension data obtained at various strain rates, which appears 
to be rather crude and unrealistic. The bond breaking energy 
of HB in water ranges typically 3-6 kcal/mole [36], which 
means that only three bonds are broken (SDT). On the other 
hand, there are approximately 11-13 HB bonds in the α-helix, 
which means that the total expectation value for the unfolding 
or binding free energy should be in the range of 33-80 Kcal/
mole (1.43-3.5 eV/molecule). This unfolding energy range 
was also included in the energy landscape studies by Idiris, 
et al. [3] on (Glu)n Cys chains under different pH conditions 
(3.0-8.0 pH) using various extension rates and found a range 
of 2000-9000 kJ/mole (20-90 eV/molecule), which shows a 
monotonously decreasing convex connection between the 
total unfolding energy and pH level of the aqueous solvent 
solution.

Variational formulation of isochoric isothermal stabilty 
of helical conformation 

Here, we clearly have a non-equilibrium deformation 
problem, such that the system, even in the absence of external 
tractions and body forces (with the exception of gravity), 
maintains its external form and internal integrity for a 
sufϐiciently long time. As shown in the main text, the most 
active and intensive component of this stored strain energy is 
the unusual torque term.

Keeping all these complications in mind, as a ϐirst step 
in handling this dynamic problem, we employ a quasi-static 
approach using a simple optimization procedure in connection 
with the planck criterion, which relies on the variational 
method [37]. Where, the Lagrange multiplier technique is 
utilized to address the constant volume constraint imposed on 
the problem while keeping the length and diameter of the amino 
acid backbone structure as free or independent variables. We 
could also enlarge our extremum problem such that the height 
(total pitch height) and radius of the hypothetical cylindrical 
shell or cage, which maintains the helical conformation of the 
amino acid chain backbone structure, can be adjusted while 
maintaining its volume and shell thickness. These constrained 
variations in the dimensions of the cage produce alterations 
in the inclination angle β of the helical conformation, which is 
reϐlected by the rotation λ and curvature κ associated with the 
amino acid skeletond [21]. These ``frozen state’ ‘ constraints 
on the cage will be lifted in our future work while dealing 
with the energetics of unfolding. The global Helmholtz free 
extremum problem can be represented by the following set. 
Here, a

) 4 2 2 3( 2 0
3

F a G a afs
    

 
 

    �                    (35)

CUsing a dipole moment of HF, which is  =3.7 D=12.34×10-30cm, the calculated 
electrostatic potential for a dipole pair is: V=-μ2 /4πεo r

3=1.7×10-12 erg, and C=-
ρ× (πa2 V)=-ρ×3.012×10-28erg /cm, where r= 2A and 2a=1.5A. If we let L=100A. 
and make use of: / 3   L C A  connection, where A=1.29×107 erg/cm3 
obtained previously for the stored elastic energy due to unusual torque term, 
then one ϔinds ρ (↓↑)=--1.28×1023 #/cm3, as the number of excess anti-align 
dipole pair per unit volume. The probably frequency of the pairs in the α-helical 
conformation having a length of L is given by P=ρ πa2L=22.6#. Then the 
probably frequency of the pair per amino acid residue becomes Pre=P/11≅-2. 
This shows that two excess anti-align pairs are required to stabilize one amino-
acid residue for 3.611 α-peptide. This high probability frequency is due to the 
selected very high shear modulus, G=1GPa. One order of magnitude reduction 
in G while keeping the arc length invariant one obtains a factor of ten reduction 
in the pair probability frequency Pre=-0.2. For this case, the electrostatic binding 
energy due to the excess anti-align dipole pairs for the whole helix conformation 
reduces to∇↑↓=-2/3 C / 3C A -1.6 eV, and 0.147 eV per amino acid residue (-3.95 
Kcal/mol)[44].
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dIn our incoming paper, this precondition on the enclosing cage structure will 
be relaxed completely by taking into account of the quasi-free variations in the 
pitch height and the radius of the helical shape (i.e., λ will be now independent 
variable) while keeping its volume constant but ϔlexible (isochoric) in order to 
simulate the unfolding process.
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In addition, with the following imposed constrains on the 
backbone skeleton:

 2( = 0,  =) 0V a ao    �                    (36)

Where δ is variation operator, ̀ a’ and � are not independent 
variables, since they are constrained by the second equation 
above, which claims that the volume of the amino-acid 
skeleton ( Vo)V ao   is invariant quantity =0V  under the 
isothermal =0T and isochoric conditions. Vo is the volume 
of the alpha peptide, which is assumed to be closed (no 
exchange of matter) and separated from the surroundings by 
conductive workless boundary conditions.

The above set of variables can be put into the independent 
variable form by deϐining a new function,  a � which is 
subjected to extremal solutions such as

      = 0a F a V a       � � �                    (37)

where x is the Lagrange Multiplier. We can then set the 
solution of the variational problem into the following format:

     = = 0a F a V a      � � �  And )(V a Vo �               (38)

This yields two independent equations in terms of the 
partial derivatives of  ,a  with respect to { , }a  independent 
variables. These may be put into the following form after 
some legitimate cancelations, where  , ,a   are unknown 
independent variables:

  2/ 4 2 = 02a G a f as      � � ,

  2 2Ó , / 4 3 3 0a a G a f as       

2=V a Vo � constant                  (39)

The solutions above can be easily obtained, which results 
in = /2fs a  from Eq. (ii) and (i), respectively: After some 
algebraic procedures, the following expressions for the 
extremal values associated with the stable length * and 
radius a* of the helical conformation can be obtained in terms 
of physicochemical system parameters:

1/3 2/3
3* = 28

fs
V Go




   
     

  
�  and

1/2 2/3 1/3
3* = 28

* fsa
V V Go o
 



     
         

    

  
�                 (40)

Using above ϐindings, the changes in the critical length and 
the radius with respect to the volume of the peptide can be 
calculated and plotted in Figure 13, which shows monotonic 
decrease in length but not radius with volume. The binding or 
extremal Helmholtz free energy can be obtained by substituting 
the calculated extremal values of the length and radius of 
the helical conformation into the expression for F (a, ),
which corresponds to a non-equilibrium stationary state. 
Then one reads:

  4* * 2 *2 *3 * *, = 2
3

E F a G a a fsGb
                       (41)

This expression can be further reduced to a form that 
involves only the internal physicochemical parameters of 
the system, such as { , , , }s of G V , using explicit connections 
associated with  **,a �  in Eq. (A-7). This amounts to the 
following rigorous and compact expression after the 
arithmetic manipulation of the terms:

   
1/31/3 33* ', , , , = 2 2

*
4 8

fsF a E f G V fs o sG b Vo G
 



 
     

    
     

 


      (42)

It is remarkable that the expression between the curly 
braces is nothing but the critical value of the Helmholtz surface 
free energy, which was designated by * * *( )* 2B a fs  , 
in our previous sections such as in Eq. (26), where we have 
had the following expression for the binding free energy; 

* 1/2 *= 2/3 B( / 3 ) 2/3 BF B AG    . This formula was obtained 
by assuming that the radius of the amino acid backbone is 
frozen, which violates the constant volume condition, but not 
necessarily the isochoric requirement. The difference between 
these two approaches is negligible in terms of the binding 
energy, as shown by numerical checking (δLnEb =1/12). Both 
mathematical approaches attempt to ϐind the extremal state 
under different constraints, but from a mathematical point of 
view, the present approach is sounder, but still cannot address 
the unfolding scenario.

Figure 13. The Helmholtz binding free energy, Eb the 
length * and the radius a* of α-Peptide with a simple helical 
conformation at the stationary non-equilibrium state under 
the isothermal isochoric conditions. Here α-Peptide is in the 
folded state, which is subjected to the stored ``anomalous or 
unusual ‘’ torsional deformation energy induced during the 
folding process that shows very small drop 0.021eV during 
the relaxation. There is also very small drop in the global 

Figure 13: The Helmholtz binding free energy, Eb the length * and the radius a* 
of α-Peptide with a simple helical conformation at the stationary non-equilibrium 
state under  the isothermal isochoric conditions. Here α-Peptide is in the folded 
state, which is subjected to the stored “anomalous or unusual” torsional deformation 
energy induced during the folding process that shows very small drop 0.021eV during 
the relaxation. There is also very small drop in the global Helmholtz free energy, 0.001 
eV. Data: G = 23 MPa and fs = 20 erg/cm2, and λ = 2.34 x 106 cm-1. The marks on 
the line plots belong to the α-peptide characterized by the invariant volume of Vo = 
1.767x10-22 cm3.
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Helmholtz free energy, 0.001 eV. Data: G = 23 MPa and fs = 20 
erg/cm2 , and λ = 2.34 x 106 cm-1. The marks on the line plots 
belong to the α-peptide characterized by the invariant volume 
of Vo = 1.767 x 10-22 cm3. 

If we take previously employed values for α-helix such as: 
a = 0.75A; Lo = 100A, which corresponds to Vo =  1.767 x 10-
22 cm3, and λ = 2.34 106 cm-1 in connection with the shear 
modulus as reported by Leon, et al. [42,43] G=2.3 x 108 dyne/
cm2 (23 MPa), and the Helmholtz speciϐic surface free energy 
as fs = 73 erg/cm2, we may obtain the following values (after 
subjected to the numerical relaxation procedure) for the 
radius, the length and the binding free energy, respectively, 
at the non-equilibrium stationary stable state: ac = 0.77A; 
Lc = 94A; Eb =-7.9 x 10-13 erg =-0.49 eV (-11.4 Kcal/mole), 
that corresponds to -0.044 eV (-1.0 Kcal/mole) per amino 
acid residue in 3.611, which has four distinct atomic species, 
respectively, (N,C’,Cα,O) in its back- bone structure in addition 
to the two hydrogen atoms plus the radicals to make up the 
skeletone [38].

Therefore, there are 11-13 HB bonds if one considers the 
N- and C-terminal capping. It is remarkable that the binding 
energy calculated here is almost equal to that previously 
obtained from the naïve approach to the stability problem, 
but the critical length reported as 93 A in the text was reduced 
to approximately 7%; at the same time, the radius showed 
an approximately 3% increase while keeping the volume 
perfectly constant, Vo = 1.767 x 10-22 cm3. where δV/V = 
2δa/a +δl/l.

According to the extensive spring mechanics studies 
conducted by Idiris, et al. [3] on α- helical polypeptide 
exposed to wide range of pH (0.3-0.8) environments, the 
unfolding energy, which is strongly correlated with the 
surface free energy term in our theory varies between 0.5 – 
7.5 eV ( pH-8.0) up to 7.5 - 55 eV( pH-3.0) depending upon 
the amount of extension, which varies from E = 1.25 nm up 
to – E = 25.0 nm during the AFM stretching experiments 
done on single (Glu)n –Cys chain n = 80, helicity = 80%). 
Their reported Young modulus was 3GPa, assuming that the 
length of the α-helix was L = 10 nm and the radius was 0.2 
nm. Idiris, et al. [3] claimed that their ϐindings are reasonable 
because they are in agreement, within a factor of two, 
with the theoretical calculation of Gang Bao from the GIT 
(personal communication). The present author believes that 
the original deϐinition of Young’s modulus, which is valid for 
linear Hookean solids or hyperelastic materials, cannot be 
used in the present case because their force-extension plot 
(F-E) shows strong nonlinearity, which can be represented 
by a second-order (quadratic) polynomial, as suggested by 

the functional length dependence of the unusual torque term 
obtained rigorously in this study. This behavior can also be 
observed in the unfolding energy versus elongation F-E plots 
from the study by Idiris, et al. [3] such as Figures 5,6. at high 
pH values. The bond-breaking energies were obtained from 
the α-helix (AH1), which is a domain from the 2 B segment of 
the vimentin intermediate ϐilament.

Results and discussion
In the ϐirst part of the applications denoted by Section-V 

, the electromechanical stability of the strained helical 
conϐirmations is treated under isothermal isochoric and 
isobaric conditions. A special reference for the application 
of this theory to the α-peptide structure of amino acid 
complexes is given by employing two different irreversible 
thermodynamics methods according to the imposed 
constraints on the free variables to obtain a simple and 
manageable mathematical model. In our following paper 
[39] on the spontaneous unfolding of helical conformations, 
we introduce a more general relaxation approach using 
the Lagrangian multiplier method to solve the extremum 
problem. While dealing with the electromechanical stability 
of this highly complex and discrete atomic skeleton of 
peptides, we are still insisting on staying in the domain of 
the continuum approach. The most important outcome of 
the present naïve thermodynamic approach to the stability 
problem is the unique role of the interfacial Helmholtz free 
energy of the boundary layers enclosing and separating the 
peptide skeleton from its immediate internal and external 
aqueous solution environment, which may be characterized 
by a single electrochemical quantity, that is, the pH level. As far 
as the critical or non-equilibrium stationary stable arc length 
of the alpha-helical conformation is concerned, for isochoric 
isothermal systems, there is only one physicochemical 
parameter that plays a major role, which is the ratio of the 
surface (interface) Helmholtz free energy and the shear 
modulus of elasticity, namely, fs/G.

In Section-VI, irreversible thermokinetics of helical 
conformation is formulated, where not only bulk Helmholtz 
free energy but also the surface Helmholtz free energy is taken 
into account for the spontaneous natural change in the global 
Helmholtz free energy, which pushes the system towards the 
non-equilibrium stationary state [6]. That hypothesis may be 
also justiϐied by the Planck (1887) criterion [22] for isochoric 
isothermal changes for closed systems. That is also connected 
to the Prigogine’s positive deϐinite entropy production 
hypothesis as a special case: 1= T 0 V=0In GS F       , where 
equal sign for reversible (equilibrium) processes, and positive 
sign for the irreversible or natural processes.

In Section-VII, a variational formulation of the isochoric 
isothermal stability of the strained helical conformation is 
considered using rigorous mathematical formulation. Here, 
we clearly have a non-equilibrium deformation problem such 

eMiddleberg, et al. [43]    reported values for Young modulus E=20-80 MPa (2-
8x108 dyne/cm2 ) and the interfacial tension as 73-120 (erg/cm2) for a peptide 
ϐilm having 15 A thickness, and self-assembled at the air water interface. 
Idiris A, Tauϐiq M, Ikai A. Spring Mechanics of α–Helical Polypeptide, Protein 
Eng. 13(11) : (2000) pp.763-770.
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that the system, even in the absence of external tractions 
and body forces (with the exception of gravity), maintains 
its external form and internal integrity for a sufϐiciently long 
time.

Conclusion
  1.  In this work, we have demonstrated that the application 

of pure torsion to a circular bar generates not only a simple 
torque from the symmetric part of the deformation tensor but 
also a torque term obtained though the anti-self-conjugate 
part of that deformation tensor. This new unusual torque 
term originates from the non-vanishing shear force ϐield 
directed along the tangential vector of the circumferences of 
the cylindrical wall surface. 

2.  The rigorous adaptation of this pure torsion problem for 
simple helical springs, which mimics the helical conformations 
of folded proteins such as α-peptides and DNA , resulted in 
very interesting ϐindings, which are closely associated with 
the vorticity of the screw symmetric deformation tensor 
approaches zero, which means that the direction of the 
unusual torque term after a few precessions tries to align with 
the z-axis of the helix. 

3.  The behavior of the helical conformation under isochoric 
and isobaric conditions was analyzed and formulated using 
fundamental postulates of irreversible thermodynamics. 
Kinetic equations related to deviations from the non-
equilibrium stationary state conϐiguration are obtained, 
which show that the gradient of the unusual torsional elastic 
energy acts as the main driving force for the inherent stability. 

4.  It has been demonstrated that the main contribution to 
the mechanical stability of α-peptide 3.611 cannot come alone 
from the electrostatic dipole-dipole interaction potential of 
the anti-align excess dipole pairs but also from the surface 
Helmholtz free energy, which is characterized by a binding 
free energy of -15.5 eV/molecule (-32.56 Kcal/mole) for an 
alpha-peptide composed of 11 amino acid residues with a 
critical arc length of approximately 10 nm, assuming that 
the shear modulus [40] is G=1GPa and the surface Helmholtz 
speciϐic free energy density is fs=800 erg/cm2. This result is 
in excellent agreement with the experimental observations of 
the AH-1 conformation of (Glu)n Cys at pH 8 by Idiris, et al. [1]. 

5.  Irreversible thermodynamic treatment of the helical 
conformation provides a method for calculating not only the 
stationary state length but also the binding Helmholtz free 
energy under isochoric isothermal conditions. The critical 
length obtained in this work for the 3.611 α-peptide is in 
excellent agreement with experimental ϐindings of 10 nm at 
275o- 360 0C as the most abundant conformation size in nature 
for folded and extended states. 

    6.  We have also provided quantitative arguments that one 
excess anti-aligned dipole pair per amino acid residue may be 

sufϐicient for the mechanical stability of α-helix conformations 
against the large stored torsional elastic deformation energy 
supplied during folding. The calculated binding Helmholtz 
free energy in the presence of two permanent anti-align 
electrostatic dipole pairs was found to be -0.37 eV assuming 
that G=23MPa for α-peptide 3.611 having 11 amino acid 
residues, which is almost equivalent to the one obtained for 
the case where the surface Helmholtz free energy fs=23 erg/
cm2 functions as a stabilizer. 

    7.  The present theory indicates that only two excess 
permanent anti-align dipole pairs for one α-Helical peptide 
molecule is requirement to stabilize the whole secondary 
structure of the protein that is exposed to heavy torsional 
deformation during the folding processes which amounts to 
7.75 eV/molecule stored electrostatic energy compared to 
the interfacial Helmholtz free energy of -23.25 eV/molecule, 
which is exposed to hydrophobic environments. 

    8.  The quantitative estimates relying on the available 
physico chemical-data [G=23MPa; fs=23 erg/cm2] indicate that 
the stored torsional deformation energy because of folding 
process is about 4.27 kcal/mole (0.185 eV/molecule) for the 
whole α-helix structure having 11 amino acid residue and 
11-13 HB, which is exactly the 2/3 of the surface free energy 
(2π a fs Lo), which amounts to 0.667 eV. This ratio was also 
predicted using the naïve theory presented in the previous 
section. These ϐigures are also very close to the case in which 
one has two anti-aligned dipole pairs that act as stabilizers. 
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